Nuclear shell model and level density

被引:12
作者
Karampagia, S. [1 ,2 ]
Zelevinsky, V [2 ,3 ]
机构
[1] Grand Valley State Univ, Dept Phys, 117 Padnos Hall Sci, Allendale, MI 49401 USA
[2] Michigan State Univ, Natl Superconducting Cyclotron Lab, 640 S Shaw Lane, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Phys & Astron, 640 S Shaw Lane, E Lansing, MI 48824 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS E | 2020年 / 29卷 / 06期
关键词
Level density; shell model; moments method; COLLECTIVE ENHANCEMENT; PARITY NONCONSERVATION; STRENGTH FUNCTIONS; VIOLATION; CALCULATE; NUMBER; PHASE; CHAOS;
D O I
10.1142/S0218301320300052
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The accurate knowledge of the nuclear level density is crucial for understanding the nuclear structure and for numerous applications including astrophysical reactions. In this review paper, we discuss the shell-model description of the nuclear level density, the use of the statistical moments method and underlying physics. The level density found with the moments method is shown to agree with the results of the exact diagonalization of the Hamiltonian matrix. The statistical approach is also compared to other standard methods for deriving level densities. The role of specific interaction matrix elements is reviewed in connection to the behavior of the level densities as these evolve. Chaotization and thermalization processes, collective enhancement and phase transitions are discussed with changing strengths of specific groups of two-body interaction matrix elements. The popular phenomenological constant temperature model is compared to the moments method and the effective temperature parameter of the model for different isotopes is discussed.
引用
收藏
页数:23
相关论文
共 75 条
[1]   Nuclear level statistics: Extending shell model theory to higher temperatures [J].
Alhassid, Y ;
Bertsch, GF ;
Fang, L .
PHYSICAL REVIEW C, 2003, 68 (04) :443221-4432211
[2]   Direct microscopic calculation of nuclear level densities in the shell model Monte Carlo approach [J].
Alhassid, Y. ;
Bonett-Matiz, M. ;
Liu, S. ;
Nakada, H. .
PHYSICAL REVIEW C, 2015, 92 (02)
[3]   An attempt to calculate the number of energy levels of a heavy nucleus [J].
Bethe, HA .
PHYSICAL REVIEW, 1936, 50 (04) :332-341
[4]   Nuclear physics B. Nuclear dynamics, theoretical [J].
Bethet, HA .
REVIEWS OF MODERN PHYSICS, 1937, 9 (02) :0069-0244
[5]  
Bjornholm S., 1974, INT C PHYS CHEM FISS, V1, P367
[6]  
Blatt J. M., 1952, Theoretical Nuclear Physics
[7]  
Bohr A., 1969, NUCL STRUCTURE, VI
[8]  
Bohr N., 1936, NATURE, V137, P34, DOI [10.1038/137344a0, DOI 10.1038/137344A0]
[9]  
Bohr N., 1937, K DAN VIDENSK SELSK, V14, P223
[10]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58