Symbolic Computations of First Integrals for Polynomial Vector Fields

被引:5
作者
Cheze, Guillaume [1 ]
Combot, Thierry [2 ]
机构
[1] Univ Toulouse, CNRS, Inst Math Toulouse, UPS IMT,UMR 5219, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Univ Bourgogne, Batiment Mirande 9 Ave Savary,BP 47870, F-21078 Dijon, France
关键词
First integrals; Symbolic computations; Complexity analysis; ORDINARY DIFFERENTIAL-EQUATIONS; LIOUVILLIAN FUNCTIONS;
D O I
10.1007/s10208-019-09437-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian orRiccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O (N omega+1), where N is the bound on the degree of a representation of the first integral and omega epsilon [2; 3] is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on the authors' websites. In the last section, we give some examples showing the efficiency of these algorithms.
引用
收藏
页码:681 / 752
页数:72
相关论文
共 41 条
[21]   A method to tackle first-order ordinary differential equations with Liouvillian functions in the solution [J].
Duarte, LGS ;
Duarte, SES ;
da Mota, LACP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17) :3899-3910
[22]  
Dumortier F, 2006, UNIVERSITEXT, P1
[23]  
Gabrielov A, 1995, MATH RES LETT, V2, P437
[24]  
Giacomini A. Ferragut. H., 2010, QUAL THEORY DYN SYST, V9, P89
[25]  
Goriely A., 2001, ADV SERIES NONLINEAR, V19
[26]   Computing minimal interpolation bases [J].
Jeannerod, Claude-Pierre ;
Neiger, Vincent ;
Schost, Eric ;
Villard, Gilles .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 83 :272-314
[27]  
Lay D., 2015, LINEAR ALGEBRA ITS A
[28]   Sharp precision in Hensel lifting for bivariate polynomial factorization [J].
Lecerf, G .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :921-933
[29]   A rational approach to the Prelle-Singer algorithm [J].
Man, YK ;
MacCallum, MAH .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (01) :31-43
[30]   COMPUTING CLOSED-FORM SOLUTIONS OF 1ST-ORDER ODES USING THE PRELLE-SINGER PROCEDURE [J].
MAN, YK .
JOURNAL OF SYMBOLIC COMPUTATION, 1993, 16 (05) :423-443