Chiral observables and S-duality in N=2*U(N) gauge theories

被引:0
作者
Ashok, S. K. [1 ]
Billo, M. [2 ,3 ]
Dell'Aquila, E. [1 ]
Frau, M. [2 ,3 ]
Lerda, A. [3 ,4 ]
Moskovic, M. [2 ,3 ]
Raman, M. [1 ]
机构
[1] Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
[2] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[3] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[4] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Via P Giuria 1, I-10125 Turin, Italy
关键词
Extended Supersymmetry; Supersymmetric gauge theory; Supersymmetry and Duality; Solitons Monopoles and Instantons; SEIBERG-WITTEN THEORY; SUPER-YANG-MILLS; INTEGRABILITY; CURVES;
D O I
10.1007/JHEP11(2016)020
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study N = 2* theories with gauge group U(N) and use equivariant localization to calculate the quantum expectation values of the simplest chiral ring elements. These are expressed as an expansion in the mass of the adjoint hypermultiplet, with coefficients given by quasi-modular forms of the S-duality group. Under the action of this group, we construct combinations of chiral ring elements that transform as modular forms of definite weight. As an independent check, we confirm these results by comparing the spectral curves of the associated Hitchin system and the elliptic Calogero-Moser system. We also propose an exact and compact expression for the 1-instanton contribution to the expectation value of the chiral ring elements.
引用
收藏
页数:37
相关论文
共 69 条
[1]   Topological strings and (almost) modular forms [J].
Aganagic, Mina ;
Bouchard, Vincent ;
Klemm, Albrecht .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (03) :771-819
[2]  
Alday LF, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)113
[3]   Liouville Correlation Functions from Four-Dimensional Gauge Theories [J].
Alday, Luis F. ;
Gaiotto, Davide ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) :167-197
[4]  
[Anonymous], ARXIV12112240
[5]  
[Anonymous], ARXIV09084052
[6]  
[Anonymous], ALGGEOM9705010
[7]   Deformed topological partition function and Nekrasov backgrounds [J].
Antoniadis, I. ;
Hohenegger, S. ;
Narain, K. S. ;
Taylor, T. R. .
NUCLEAR PHYSICS B, 2010, 838 (03) :253-265
[8]  
Ashok SK, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2016)118
[9]  
Ashok SK, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2015)091
[10]  
Beccaria M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2016)066