Implementation of Nash bargaining solutions with non-convexity

被引:4
作者
Qin, Cheng-Zhong [1 ]
Tan, Guofu [2 ]
Wong, Adam Chi Leung [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Econ, Santa Barbara, CA 93106 USA
[2] Univ Southern Calif, Dept Econ, Los Angeles, CA 90089 USA
[3] Lingnan Univ, Dept Econ, Tuen Mun, 8 Castle Peak Rd, Hong Kong, Peoples R China
关键词
Bargaining problem; Non-convexity; Nash solution; Implementation;
D O I
10.1016/j.econlet.2019.02.016
中图分类号
F [经济];
学科分类号
02 ;
摘要
Nash solutions for two-player bargaining problems with non-convexity are shown to be dictatorial selections of Nash product maximizers in recent literature. In this paper we show that these solutions are implementable as unique subgame perfect equilibrium payoff allocations of a sequential game. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 49
页数:4
相关论文
共 14 条
[1]   THE NASH BARGAINING SOLUTION IN ECONOMIC MODELING [J].
BINMORE, K ;
RUBINSTEIN, A ;
WOLINSKY, A .
RAND JOURNAL OF ECONOMICS, 1986, 17 (02) :176-188
[2]  
Binmore K., 1987, EC BARGAINING
[3]   TIME PREFERENCE [J].
FISHBURN, PC .
INTERNATIONAL ECONOMIC REVIEW, 1982, 23 (03) :677-694
[4]   THE NASH PROGRAM - NON-CONVEX BARGAINING PROBLEMS [J].
HERRERO, MJ .
JOURNAL OF ECONOMIC THEORY, 1989, 49 (02) :266-277
[5]   OTHER SOLUTIONS TO NASHS BARGAINING PROBLEM [J].
KALAI, E ;
SMORODINSKY, M .
ECONOMETRICA, 1975, 43 (03) :513-518
[6]   TWO-PERSON COOPERATIVE GAMES [J].
Nash, John .
ECONOMETRICA, 1953, 21 (01) :128-140
[7]   THE BARGAINING PROBLEM [J].
Nash, John F., Jr. .
ECONOMETRICA, 1950, 18 (02) :155-162
[8]   Nash social welfare orderings [J].
Naumova, N ;
Yanovskaya, E .
MATHEMATICAL SOCIAL SCIENCES, 2001, 42 (03) :203-231
[9]  
Osborne M. J., 1990, Bargaining and markets
[10]   WPO, COV and IIA bargaining solutions for non-convex bargaining problems [J].
Peters, Hans ;
Vermeulen, Dries .
INTERNATIONAL JOURNAL OF GAME THEORY, 2012, 41 (04) :851-884