Automated physical classification in the SDSS DR10. A catalogue of candidate quasars

被引:39
作者
Brescia, M. [1 ]
Cavuoti, S. [1 ]
Longo, G. [2 ]
机构
[1] Astron Observ Capodimonte INAF, I-80131 Naples, Italy
[2] Univ Federico II, Dept Phys, I-80126 Naples, Italy
关键词
methods: data analysis; techniques: photometric; catalogues; galaxies: active; quasars: general; DIGITAL-SKY-SURVEY; EFFICIENT PHOTOMETRIC SELECTION; EMISSION-LINE GALAXIES; DATA RELEASE; SPECTROSCOPIC SURVEY; EVOLUTION; MEMORY; I;
D O I
10.1093/mnras/stv854
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss whether modern machine learning methods can be used to characterize the physical nature of the large number of objects sampled by the modern multiband digital surveys. In particular, we applied the MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) method to the optical data of the Sloan Digital Sky Survey (SDSS) Data Release 10, investigating whether photometric data alone suffice to disentangle different classes of objects as they are defined in the SDSS spectroscopic classification. We discuss three groups of classification problems: (i) the simultaneous classification of galaxies, quasars and stars; (ii) the separation of stars from quasars; (iii) the separation of galaxies with normal spectral energy distribution from those with peculiar spectra, such as starburst or star-forming galaxies and AGN. While confirming the difficulty of disentangling AGN from normal galaxies on a photometric basis only, MLPQNA proved to be quite effective in the three-class separation. In disentangling quasars from stars and galaxies, our method achieved an overall efficiency of 91.31 per cent and a QSO class purity of similar to 95 per cent. The resulting catalogue of candidate quasars/AGNs consists of similar to 3.6 million objects, of which about half a million are also flagged as robust candidates, and will be made available on CDS VizieR facility.
引用
收藏
页码:3893 / 3903
页数:11
相关论文
共 40 条
  • [1] A photometric catalogue of quasars and other point sources in the Sloan Digital Sky Survey
    Abraham, Sheelu
    Philip, Ninan Sajeeth
    Kembhavi, Ajit
    Wadadekar, Yogesh G.
    Sinha, Rita
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (01) : 80 - 94
  • [2] THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT
    Ahn, Christopher P.
    Alexandroff, Rachael
    Allende Prieto, Carlos
    Anders, Friedrich
    Anderson, Scott F.
    Anderton, Timothy
    Andrews, Brett H.
    Aubourg, Eric
    Bailey, Stephen
    Bastien, Fabienne A.
    Bautista, Julian E.
    Beers, Timothy C.
    Beifiori, Alessandra
    Bender, Chad F.
    Berlind, Andreas A.
    Beutler, Florian
    Bhardwaj, Vaishali
    Bird, Jonathan C.
    Bizyaev, Dmitry
    Blake, Cullen H.
    Blanton, Michael R.
    Blomqvist, Michael
    Bochanski, John J.
    Bolton, Adam S.
    Borde, Arnaud
    Bovy, Jo
    Bradley, Alaina Shelden
    Brandt, W. N.
    Brauer, Dorothee
    Brinkmann, J.
    Brownstein, Joel R.
    Busca, Nicolas G.
    Carithers, William
    Carlberg, Joleen K.
    Carnero, Aurelio R.
    Carr, Michael A.
    Chiappini, Cristina
    Chojnowski, S. Drew
    Chuang, Chia-Hsun
    Comparat, Johan
    Crepp, Justin R.
    Cristiani, Stefano
    Croft, Rupert A. C.
    Cuesta, Antonio J.
    Cunha, Katia
    da Costa, Luiz N.
    Dawson, Kyle S.
    De Lee, Nathan
    Dean, Janice D. R.
    Delubac, Timothee
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (02)
  • [3] Anderson S. F., 2007, MNRAS, V374, P1506
  • [4] UNIFIED MODELS FOR ACTIVE GALACTIC NUCLEI AND QUASARS
    ANTONUCCI, R
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1993, 31 : 473 - 521
  • [5] Borne K., 2010, BAAS, V42, P578
  • [6] PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS
    Brescia, M.
    Cavuoti, S.
    D'Abrusco, R.
    Longo, G.
    Mercurio, A.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 772 (02)
  • [7] Brescia M., 2014, PASP, V126, P743
  • [8] The detection of globular clusters in galaxies as a data mining problem
    Brescia, Massimo
    Cavuoti, Stefano
    Paolillo, Maurizio
    Longo, Giuseppe
    Puzia, Thomas
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (02) : 1155 - 1165
  • [9] REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS
    BYRD, RH
    NOCEDAL, J
    SCHNABEL, RB
    [J]. MATHEMATICAL PROGRAMMING, 1994, 63 (02) : 129 - 156
  • [10] Photometric redshift estimation based on data mining with PhotoRApToR
    Cavuoti, S.
    Brescia, M.
    De Stefano, V.
    Longo, G.
    [J]. EXPERIMENTAL ASTRONOMY, 2015, 39 (01) : 45 - 71