On the Asymptotic Stability of an Hassell Predator-Prey Model with Mutual Interference

被引:3
作者
De Luca, Roberta [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, I-80126 Naples, Italy
关键词
Hassell; Nonautonomous ODEs system; Global stability; Absorbing set; LOTKA-VOLTERRA SYSTEM; INSECT PARASITES; PERMANENCE; PERTURBATION; EQUATIONS; DELAYS;
D O I
10.1007/s10440-012-9737-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The longtime behaviour of a nonautonomous, bidimensional, Lotka-Volterra-Hassell model with mutual interference is investigated. The existence of an absorbing set is shown together with global nonlinear asymptotic stability of the positive critical points.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 1997, SPRINGER TEXTS APPL
[2]  
Capone F., 1991, P 6 INT C WAV STAB C, V46, P55
[3]  
De Luca R., 2009, NEW TRENDS FLUID SOL, V1, P49
[4]  
DELUCA R, 2010, REND ACCAD SCI FIS, V77, P117
[5]  
Freedman H. I., 1980, MONOGRAPHS TXB PURE, V57
[6]   STABILITY ANALYSIS OF A PREDATOR-PREY SYSTEM WITH MUTUAL INTERFERENCE AND DENSITY-DEPENDENT DEATH RATES [J].
FREEDMAN, HI .
BULLETIN OF MATHEMATICAL BIOLOGY, 1979, 41 (01) :67-78
[7]   PERTURBATION OF 2-DIMENSIONAL PREDATOR-PREY EQUATIONS [J].
FREEDMAN, HI ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (01) :1-10
[8]   PERTURBATION OF 2-DIMENSIONAL PREDATOR-PREY EQUATIONS WITH AN UNPERTURBED CRITICAL-POINT [J].
FREEDMAN, HI ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 29 (04) :719-733
[9]  
FREEDMAN HI, 1975, INT C DIFF EQ, P312
[10]   NEW INDUCTIVE POPULATION MODEL FOR INSECT PARASITES AND ITS BEARING ON BIOLOGICAL CONTROL [J].
HASSELL, MP ;
VARLEY, GC .
NATURE, 1969, 223 (5211) :1133-&