SnO2 Nanoparticles Embedded Biochar as Anode Material in Lithium Ion Batteries

被引:0
|
作者
Chen, Ke [1 ]
Pathak, Rajesh [1 ]
Bahrami, Behzad [1 ]
Rahman, Md Tawabur [1 ]
Lu, Huitian [2 ]
Zhou, Yue [1 ]
Qiao, Qiquan [1 ]
机构
[1] South Dakota State Univ, Dept Elect Engn & Comp Sci, Ctr Adv Photovolta & Sustainable Energy, Brookings, SD 57007 USA
[2] South Dakota State Univ, Dept Construct & Operat Management, Brookings, SD 57007 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT) | 2019年
关键词
CARBON; STORAGE; NANOCOMPOSITES; PERFORMANCE;
D O I
10.1109/eit.2019.8833745
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To meet two goals of low cost and sustainability for battery fabrication, a SnO2 nanoparticles embedded biochar (biochar/SnO2) composite was fabricated using agriculture waste via a facile two-step hydrothermal and sintering method. The as prepared biochar/SnO2 showed a uniform SnO2 distribution in biochar. As a result, a high specific capacity of 577 mAh/g was obtained after 100 cycles, which is much higher than pristine SnO2 nanoparticles and biochar. The significant improvement of specific capacity and cycle stability could be attributed to the nature hierarchical porous structure from biochar, which provided a high surface area and a volume buffer for SnO2 during battery operation.
引用
收藏
页码:465 / 468
页数:4
相关论文
共 50 条
  • [21] Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries
    Mueller, Franziska
    Bresser, Dominic
    Chakravadhanula, Venkata Sai Kiran
    Passerini, Stefano
    JOURNAL OF POWER SOURCES, 2015, 299 : 398 - 402
  • [22] Direct growth of SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries
    Han, Qianyan
    Zai, Jiantao
    Xiao, Yinglin
    Li, Bo
    Xu, Miao
    Qian, Xuefeng
    RSC ADVANCES, 2013, 3 (43) : 20573 - 20578
  • [23] Ordered Mesoporous Core/Shell SnO2/C Nanocomposite as High-Capacity Anode Material for Lithium-Ion Batteries
    Liu, Hao
    Chen, Sheng
    Wang, Guoxiu
    Qiao, Shi Zhang
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (50) : 16897 - 16901
  • [24] Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries
    Xia, Guofeng
    Li, Ning
    Li, Deyu
    Liu, Ruiqing
    Xiao, Ning
    Tian, Dong
    MATERIALS LETTERS, 2011, 65 (23-24) : 3377 - 3379
  • [25] Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries
    Wan, Yuanxin
    Wang, Tianyi
    Lu, Hongyan
    Xu, Xiaoqian
    Zuo, Chen
    Wang, Yong
    Teng, Chao
    RSC ADVANCES, 2018, 8 (21): : 11744 - 11748
  • [26] Hierarchical SnO2 with double carbon coating composites as anode materials for lithium ion batteries
    Huang, Bin
    Yang, Juan
    Zhou, Xiangyang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2443 - 2449
  • [27] Electrochemical properties of SnO2 nanoparticles immobilized within a metal-organic framework as an anode material for lithium-ion batteries
    Wang, Buxue
    Wang, Ziqi
    Cui, Yuanjing
    Yang, Yu
    Wang, Zhiyu
    Qian, Guodong
    RSC ADVANCES, 2015, 5 (103): : 84662 - 84665
  • [28] Carbon nanosheets wrapped in SnO2-TiO2 nanoparticles as a high performance anode material for lithium ion batteries
    Jiang, Wenqin
    Xiong, Deping
    Wu, Shanshan
    Gao, Jiongjian
    Wu, Kaidan
    Li, Wenrui
    Feng, Yefeng
    He, Miao
    Feng, Zuyong
    CERAMICS INTERNATIONAL, 2022, 48 (18) : 27174 - 27181
  • [29] SnO2 nano-particles imbedded in graphene bulk as anode material for lithium-ion batteries
    Hua, Xiaoyan
    Shen, Yuwei
    Shi, Shaojun
    IONICS, 2019, 25 (12) : 5769 - 5778
  • [30] TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries
    Yi Jin
    Li Xiaoping
    Hu Shejun
    Li Weishan
    Zeng Ronghua
    Fu Zhao
    Chen Lang
    RARE METALS, 2011, 30 (06) : 589 - 594