Endothelialized Microfluidics for Studying Microvascular Interactions in Hematologic Diseases

被引:37
作者
Myers, David R. [1 ,2 ,3 ,4 ,5 ,6 ]
Sakurai, Yumiko [1 ,2 ,3 ,4 ,5 ,6 ]
Tran, Reginald [1 ,2 ,3 ,4 ,5 ,6 ]
Ahn, Byungwook [1 ,2 ,3 ,4 ,5 ,6 ]
Hardy, Elaissa Trybus [1 ,2 ,3 ,4 ,5 ,6 ]
Mannino, Robert [1 ,2 ,3 ,4 ,5 ,6 ]
Kita, Ashley [1 ,2 ,3 ,4 ,5 ,6 ]
Tsai, Michelle [1 ,2 ,3 ,4 ,5 ,6 ]
Lam, Wilbur A. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Emory Univ, Sch Med, Dept Pediat, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30322 USA
[4] Aflac Canc Ctr, Atlanta, GA USA
[5] Childrens Healthcare Atlanta, Blood Disorders Serv, Atlanta, GA USA
[6] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2012年 / 64期
关键词
Bioengineering; Issue; 64; Biomedical Engineering; endothelial cells; HUVEC; microfabrication; microvasculature; SU-8; micromolding; soft lithography;
D O I
10.3791/3958
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in microfabrication techniques have enabled the production of inexpensive and reproducible microfluidic systems for conducting biological and biochemical experiments at the micro-and nanoscales (1,2). In addition, microfluidics have also been specifically used to quantitatively analyze hematologic and microvascular processes, because of their ability to easily control the dynamic fluidic environment and biological conditions(3-6). As such, researchers have more recently used microfluidic systems to study blood cell deformability, blood cell aggregation, microvascular blood flow, and blood cell-endothelial cell interactions(6-13). However, these microfluidic systems either did not include cultured endothelial cells or were larger than the sizescale relevant to microvascular pathologic processes. A microfluidic platform with cultured endothelial cells that accurately recapitulates the cellular, physical, and hemodynamic environment of the microcirculation is needed to further our understanding of the underlying biophysical pathophysiology of hematologic diseases that involve the microvasculature. Here, we report a method to create an "endothelialized" in vitro model of the microvasculature, using a simple, single mask microfabrication process in conjunction with standard endothelial cell culture techniques, to study pathologic biophysical microvascular interactions that occur in hematologic disease. This "microvasculature-on-a-chip" provides the researcher with a robust assay that tightly controls biological as well as biophysical conditions and is operated using a standard syringe pump and brightfield/fluorescence microscopy. Parameters such as microcirculatory hemodynamic conditions, endothelial cell type, blood cell type(s) and concentration(s), drug/inhibitory concentration etc., can all be easily controlled. As such, our microsystem provides a method to quantitatively investigate disease processes in which microvascular flow is impaired due to alterations in cell adhesion, aggregation, and deformability, a capability unavailable with existing assays.
引用
收藏
页数:4
相关论文
共 15 条
  • [1] Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate
    Borenstein, Jeffrey T.
    Tupper, Malinda M.
    Mack, Peter J.
    Weinberg, Eli J.
    Khalil, Ahmad S.
    Hsiao, James
    Garcia-Cardena, Guillermo
    [J]. BIOMEDICAL MICRODEVICES, 2010, 12 (01) : 71 - 79
  • [2] Haemolytic uraemic syndrome: prognostic factors
    Green, DA
    Murphy, WG
    Uttley, WS
    [J]. CLINICAL AND LABORATORY HAEMATOLOGY, 2000, 22 (01): : 11 - 14
  • [3] Sickle cell vasoocclusion and rescue in a microfluidic device
    Higgins, J. M.
    Eddington, D. T.
    Bhatia, S. N.
    Mahadevan, L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) : 20496 - 20500
  • [4] The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist
    Karunarathne, Welvitya
    Ku, Chia-Jui
    Spence, Dana M.
    [J]. INTEGRATIVE BIOLOGY, 2009, 1 (11-12) : 655 - 663
  • [5] Clinical microfluidics for neutrophil genomics and proteomics
    Kotz, Kenneth T.
    Xiao, Wenzong
    Miller-Graziano, Carol
    Qian, Wei-Jun
    Russom, Aman
    Warner, Elizabeth A.
    Moldawer, Lyle L.
    De, Asit
    Bankey, Paul E.
    Petritis, Brianne O.
    Camp, David G., II
    Rosenbach, Alan E.
    Goverman, Jeremy
    Fagan, Shawn P.
    Brownstein, Bernard H.
    Irimia, Daniel
    Xu, Weihong
    Wilhelmy, Julie
    Mindrinos, Michael N.
    Smith, Richard D.
    Davis, Ronald W.
    Tompkins, Ronald G.
    Toner, Mehmet
    [J]. NATURE MEDICINE, 2010, 16 (09) : 1042 - U142
  • [6] The Level of Laboratory Testing Required for Diagnosis or Exclusion of a Platelet Function Disorder Using Platelet Aggregation and Secretion Assays
    Mezzano, Diego
    Quiroga, Teresa
    Pereira, Jaime
    [J]. SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2009, 35 (02) : 242 - 254
  • [7] A shear gradient-dependent platelet aggregation mechanism drives thrombus formation
    Nesbitt, Warwick S.
    Westein, Erik
    Tovar-Lopez, Francisco Javier
    Tolouei, Elham
    Mitchell, Arnan
    Fu, Jia
    Carberry, Josie
    Fouras, Andreas
    Jackson, Shaun P.
    [J]. NATURE MEDICINE, 2009, 15 (06) : 665 - U146
  • [8] Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature
    Prabhakarpandian, Balabhaskar
    Shen, Ming-Che
    Pant, Kapil
    Kiani, Mohammad F.
    [J]. MICROVASCULAR RESEARCH, 2011, 82 (03) : 210 - 220
  • [9] A physiologically realistic in vitro model of microvascular networks
    Rosano, Jenna M.
    Tousi, Nazanin
    Scott, Robert C.
    Krynska, Barbara
    Rizzo, Victor
    Prabhakarpandian, Balabhaskar
    Pant, Kapil
    Sundaram, Shivshankar
    Kiani, Mohammad F.
    [J]. BIOMEDICAL MICRODEVICES, 2009, 11 (05) : 1051 - 1057
  • [10] Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry
    Rosenbluth, Michael J.
    Lam, Wilbur A.
    Fletcher, Daniel A.
    [J]. LAB ON A CHIP, 2008, 8 (07) : 1062 - 1070