Synthesis of Graphene Films by Rapid Heating and Quenching at Ambient Pressures and Their Electrochemical Characterization

被引:21
作者
David, L. [1 ]
Bhandavat, R. [1 ]
Kulkarni, G. [2 ]
Pahwa, S. [1 ]
Zhong, Z. [2 ]
Singh, G. [1 ]
机构
[1] Kansas State Univ, Mech & Nucl Engn Dept, Manhattan, KS 66506 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
CVD; graphene; rapid heating and cooling and lithium-ion battery; RAMAN-SPECTROSCOPY; BILAYER GRAPHENE; HIGH-QUALITY; CARBON; GRAPHITE; ION;
D O I
10.1021/am301782h
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the process of graphene growth on Cu and Ni substrates subjected to rapid heating (approximately 8 degrees C/s) and cooling cycles (approximately 10 degrees C/s) in a modified atmospheric pressure chemical vapor deposition furnace. Electron microscopy followed by Raman spectroscopy demonstrated successful synthesis of large-area few-layer graphene (FLG) films on both Cu and Ni substrates. The overall synthesis time was less than 30 min. Further, the as-synthesized films were directly utilized as anode material and their electrochemical behavior was studied in a lithium half-cell configuration. FLG on Cu (Cu-G) showed reduced lithium-intercalation capacity when compared with SLG, BLG and Bare-Cu suggesting its substrate protective nature (barrier to Li-ions). Although graphene films on Ni (Ni-G) showed better Li-cycling ability similar to that of other carbons suggesting that the presence of graphene edge planes (typical of Ni-G) is important in effective uptake and release of Li-ions in these materials.
引用
收藏
页码:546 / 552
页数:7
相关论文
共 39 条
  • [1] RAMAN-SPECTROSCOPY OF CLOSED-SHELL CARBON PARTICLES
    BACSA, WS
    DEHEER, WA
    UGARTE, D
    CHATELAIN, A
    [J]. CHEMICAL PHYSICS LETTERS, 1993, 211 (4-5) : 346 - 352
  • [2] Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
  • [3] Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst
    Bhaviripudi, Sreekar
    Jia, Xiaoting
    Dresselhaus, Mildred S.
    Kong, Jing
    [J]. NANO LETTERS, 2010, 10 (10) : 4128 - 4133
  • [4] Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
  • [5] Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy
    Chen, Shanshan
    Brown, Lola
    Levendorf, Mark
    Cai, Weiwei
    Ju, Sang-Yong
    Edgeworth, Jonathan
    Li, Xuesong
    Magnuson, Carl W.
    Velamakanni, Aruna
    Piner, Richard D.
    Kang, Junyong
    Park, Jiwoong
    Ruoff, Rodney S.
    [J]. ACS NANO, 2011, 5 (02) : 1321 - 1327
  • [6] RAMAN MICROPROBE STUDIES ON CARBON MATERIALS
    CUESTA, A
    DHAMELINCOURT, P
    LAUREYNS, J
    MARTINEZALONSO, A
    TASCON, JMD
    [J]. CARBON, 1994, 32 (08) : 1523 - 1532
  • [7] Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
    Dresselhaus, Mildred S.
    Jorio, Ado
    Hofmann, Mario
    Dresselhaus, Gene
    Saito, Riichiro
    [J]. NANO LETTERS, 2010, 10 (03) : 751 - 758
  • [8] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [9] Interpretation of Raman spectra of disordered and amorphous carbon
    Ferrari, AC
    Robertson, J
    [J]. PHYSICAL REVIEW B, 2000, 61 (20) : 14095 - 14107
  • [10] Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    Ferrari, Andrea C.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 47 - 57