Progress in visual representations of chemical space

被引:56
作者
Osolodkin, Dmitry I. [1 ,2 ]
Radchenko, Eugene V. [1 ,3 ]
Orlov, Alexey A. [1 ,2 ]
Voronkov, Andrey E. [1 ,4 ,5 ]
Palyulin, Vladimir A. [1 ,3 ]
Zefirov, Nikolay S. [1 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[2] Chumakov Inst Poliomyelitis & Viral Encephalitid, Moscow 142782, Russia
[3] RAS, Inst Physiol Act Cpds, Chernogolovka 142432, Moscow Region, Russia
[4] Digital BioPharm Ltd, London EC1V 4PW, England
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
big data; chemical space; chemoinformatics; data mining; visualization; NONLINEAR DIMENSIONALITY REDUCTION; SELF-ORGANIZING MAPS; DATA VISUALIZATION; DRUG DISCOVERY; MEDICINAL CHEMISTRY; COMPOUND LIBRARIES; CHES-MAPPER; BIG DATA; CLASSIFICATION; CHEMOGRAPHY;
D O I
10.1517/17460441.2015.1060216
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: The concept of 'chemical space' reveals itself in two forms: the discrete set of all possible molecules, and multi-dimensional descriptor space encompassing all the possible molecules. Approaches based on this concept are widely used for the analysis and enumeration of compound databases, library design, and structure-activity relationships (SAR) and landscape studies. Visual representations of chemical space differ in their applicability domains and features and require expert knowledge for choosing the right tool for a particular problem. Areas covered: In this review, the authors present recent advances in visualization of the chemical space in the framework of current general understanding of this topic. Attention is given to such methods as van Krevelen diagrams, descriptor plots, principal components analysis (PCA), self-organizing maps (SOM), generative topographic mapping (GTM), graph and network-based approaches. Notable application examples are provided. Expert opinion: With the growth of computational power, representations of large datasets are becoming more and more common instruments in the toolboxes of chemoinformaticians. Every scientist in the field can find the method of choice for a particular task. However, there is no universal reference representation of the chemical space currently available and expert knowledge is required.
引用
收藏
页码:959 / 973
页数:15
相关论文
共 111 条
[1]   Exploring the Chemical Space of Multitarget Ligands Using Aligned Self-Organizing Maps [J].
Achenbach, Janosch ;
Klingler, Franca-Maria ;
Bloecher, Rene ;
Moser, Daniel ;
Haefner, Ann-Kathrin ;
Roedl, Carmen B. ;
Kretschmer, Simon ;
Krueger, Bjoern ;
Loehr, Frank ;
Stark, Holger ;
Hofmann, Bettina ;
Steinhilber, Dieter ;
Proschak, Ewgenij .
ACS MEDICINAL CHEMISTRY LETTERS, 2013, 4 (12) :1169-1172
[2]   A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism [J].
Adams, James Corey ;
Keiser, Michael J. ;
Basuino, Li ;
Chambers, Henry F. ;
Lee, Deok-Sun ;
Wiest, Olaf G. ;
Babbitt, Patricia C. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (08)
[3]   Stochastic Proximity Embedding: Methods and Applications [J].
Agrafiotis, Dimitris K. ;
Xu, Huafeng ;
Zhu, Fangqiang ;
Bandyopadhyay, Deepak ;
Liu, Pu .
MOLECULAR INFORMATICS, 2010, 29 (11) :758-770
[4]   Scaffold Explorer: An Interactive Tool for Organizing and Mining Structure-Activity Data Spanning Multiple Chemotypes [J].
Agrafiotis, Dimitris K. ;
Wiener, John J. M. .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (13) :5002-5011
[5]   Stochastic proximity embedding [J].
Agrafiotis, DK .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (10) :1215-1221
[6]  
[Anonymous], 2014, STAND 14 11 3 0
[7]  
[Anonymous], STARDROP
[8]   MQN-Mapplet: Visualization of Chemical Space with Interactive Maps of Drug Bank, ChEMBL, Pub Chem, GDB-11, and GDB-13 [J].
Awale, Mahendra ;
van Deursen, Ruud ;
Reymond, Jean-Louis .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (02) :509-518
[9]   Modeling of activity landscapes for drug discovery [J].
Bajorath, Juergen .
EXPERT OPINION ON DRUG DISCOVERY, 2012, 7 (06) :463-473
[10]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326