Complicated Asymptotic Behavior of Solutions for Heat Equation in Some Weighted Space

被引:1
作者
Wang, Liangwei [1 ]
Yin, Jingxue [2 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Wanzhou 404000, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
LARGE TIME BEHAVIOR; POROUS-MEDIUM EQUATION; UNIVERSAL SOLUTIONS; COMPLEXITY;
D O I
10.1155/2012/463082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic behavior of solutions for the heat equation in the weighted space Y-0(sigma)(R-N) equivalent to {phi is an element of C(R-N) : lim(vertical bar x vertical bar -> 8)(1 + vertical bar x vertical bar(2))(sigma/2)phi(x) = 0}. Exactly, we find that the unbounded function space Y-0(sigma)(R-N) with 0 < sigma < N can provide a setting where complexity occurs in the asymptotic behavior of solutions for the heat equation.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2001, J. Math. Sci. Univ. Tokyo
[2]  
[Anonymous], 2006, Elliptic and Parabolic Equations
[3]   Asymptotic complexity in filtration equations [J].
Carrillo, J. A. ;
Vazquez, J. L. .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (03) :471-495
[4]  
Cazenave T, 2003, DISCRETE CONT DYN S, V9, P1105
[5]  
Cazenave T, 2007, J DYN DIFFER EQU, V19, P789, DOI 10.1007/s10884-007-9076-z
[6]  
Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
[7]  
Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
[8]   Sign-changing stationary solutions and blowup for the nonlinear heat equation in a ball [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :431-449
[9]   LARGE TIME BEHAVIOR OF THE SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION IN RN [J].
GMIRA, A ;
VERON, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 53 (02) :258-276
[10]   Subcritical nonlinear heat equation [J].
Hayashi, Nakao ;
Kaikina, Elena I. ;
Naumkin, Pavel I. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (02) :366-380