Effects of plasma shaping on nonlinear gyrokinetic turbulence

被引:45
作者
Belli, E. A. [1 ]
Hammett, G. W. [1 ]
Dorland, W. [2 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2972160
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus [P.H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of chi similar to kappa(-1.5) or kappa(-2.0), depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows. (c) 2008 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Physical mechanism of enhanced stability from negative shear in tokamaks: Implications for edge transport and the L-H transition [J].
Antonsen, TM ;
Drake, JF ;
Guzdar, PN ;
Hassam, AB ;
Lau, YT ;
Liu, CS ;
Novakovskii, SV .
PHYSICS OF PLASMAS, 1996, 3 (06) :2221-2223
[2]  
Belli E.A., 2006, THESIS PRINCETON U
[3]   Stabilizing impact of high gradient of β on microturbulence [J].
Bourdelle, C ;
Dorland, W ;
Garbet, X ;
Hammett, GW ;
Kotschenreuther, M ;
Rewoldt, G ;
Synakowski, EJ .
PHYSICS OF PLASMAS, 2003, 10 (07) :2881-2887
[4]   Local transport in joint European Tokamak edge-localized, high-confinement mode plasmas with H, D, DT, and T isotopes [J].
Budny, RV ;
Ernst, DR ;
Hahm, TS ;
McCune, DC ;
Christiansen, JP ;
Cordey, JG ;
Gowers, CG ;
Guenther, K ;
Hawkes, N ;
Jarvis, ON ;
Stubberfield, PM ;
Zastrow, KD ;
Horton, LD ;
Saibene, G ;
Sartori, R ;
Thomsen, K ;
von Hellermann, MG .
PHYSICS OF PLASMAS, 2000, 7 (12) :5038-5050
[5]   Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas [J].
Chen, Yang ;
Parker, Scott E. ;
Rewoldt, Gregory ;
Ku, Seung-Hoe ;
Park, Gun-Young ;
Chang, C-S .
PHYSICS OF PLASMAS, 2008, 15 (05)
[6]   IDEAL-MHD STABILITY OF FINITE-BETA PLASMAS [J].
COPPI, B ;
FERREIRA, A ;
MARK, JWK ;
RAMOS, JJ .
NUCLEAR FUSION, 1979, 19 (06) :715-725
[7]   Scaling of the energy confinement time with β and collisionality approaching ITER conditions [J].
Cordey, JG ;
Thomsen, K ;
Chudnovskiy, A ;
Kardaun, OJWF ;
Takizuka, T ;
Snipes, JA ;
Greenwald, M ;
Sugiyama, L ;
Ryter, F ;
Kus, A ;
Stober, J ;
DeBoo, JC ;
Petty, CC ;
Bracco, G ;
Romanelli, M ;
Cui, Z ;
Liu, Y ;
McDonald, DC ;
Meakins, A ;
Miura, Y ;
Shinohara, K ;
Tsuzuki, K ;
Kamada, Y ;
Urano, H ;
Valovic, M ;
Akers, R ;
Brickley, C ;
Sykes, A ;
Walsh, MJ ;
Kaye, SM ;
Bush, C ;
Hogewei, D ;
Martin, Y ;
Cote, A ;
Pacher, G ;
Ongena, J ;
Imbeaux, F ;
Hoang, GT ;
Lebedev, S ;
Leonov, V .
NUCLEAR FUSION, 2005, 45 (09) :1078-1084
[8]   Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks [J].
Dimits, AM ;
Williams, TJ ;
Byers, JA ;
Cohen, BI .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :71-74
[9]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[10]   Electron temperature gradient turbulence [J].
Dorland, W ;
Jenko, F ;
Kotschenreuther, M ;
Rogers, BN .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5579-5582