Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma

被引:30
作者
Popp, Ilinca [1 ]
Bott, Stefan [1 ]
Mix, Michael [2 ,9 ]
Oehlke, Oliver [1 ,11 ]
Schimek-Jasch, Tanja [1 ]
Nieder, Carsten [3 ,4 ]
Nestle, Ursula [1 ,9 ,11 ]
Bock, Michael [5 ]
Yuh, William T. C. [6 ]
Meyer, Philipp Tobias [2 ,9 ]
Weber, Wolfgang A. [7 ,10 ]
Urbach, Horst [8 ]
Mader, Irina [8 ]
Grosu, Anca-Ligia [1 ,9 ]
机构
[1] Univ Freiburg, Dept Radiat Oncol, Med Ctr, Robert Koch Str 3, D-79106 Freiburg, Germany
[2] Univ Freiburg, Dept Nucl Med, Med Ctr, Freiburg, Germany
[3] Nordland Hosp, Dept Oncol & Palliat Med, Bodo, Norway
[4] Univ Tromso, Fac Hlth Sci, Dept Clin Med, Tromso, Norway
[5] Univ Freiburg, Dept Radiol, Med Phys, Med Ctr, Freiburg, Germany
[6] Univ Washington, Dept Neuroradiol, Sch Med, Seattle, WA 98195 USA
[7] Tech Univ Munich, Klinikum Rechts Isar, Dept Nucl Med, Munich, Germany
[8] Univ Freiburg, Dept Neuroradiol, Med Ctr, Freiburg, Germany
[9] Partner Site Freiburg, German Canc Consortium DKTK, Freiburg, Germany
[10] Partner Site Munich, German Canc Consortium DKTK, Munich, Germany
[11] Kliniken Maria Hilf, Dept Radiat Oncol, Monchengladbach, Germany
关键词
Diffusion weighted magnetic resonance imaging; Positron-emission tomography; Gross tumor volume delineation; Recurrent glioblastoma; Re-irradiation; POSITRON-EMISSION-TOMOGRAPHY; MODULATED RADIATION-THERAPY; HIGH-GRADE GLIOMAS; AMINO-ACID PET; IMAGE FUSION; PSEUDOPROGRESSION; COEFFICIENT; DIAGNOSIS; DIFFERENTIATION; NEUROONCOLOGY;
D O I
10.1016/j.radonc.2018.08.019
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: GTV definition for re-irradiation treatment planning in recurrent glioblastoma (rGBM) is usually based on contrast-enhanced MRI (GdT1w-MRI) and, for an increased specificity, on amino acid PET. Diffusion-weighted (DWI) MRI and ADC maps can reveal regions of high cellularity as surrogate for active tumor. The objective of this study was to compare the localization and quality of diffusion restriction foci (GTV-ADClow) with FET-PET (GTV-PET) and GdT1w-MRI (GTV-GdT1w-MRI). Material and methods: We prospectively evaluated 41 patients, who received a fractionated stereotactic re-irradiation for rGBM. GTV-PET was generated automatically (tumor-to-background ratio 1.7-1.8) and manually customized. GTV-ADClow was manually defined based on DWI data (3D diffusion gradients, b = 0, 1000 s/mm(2)) and parametric ADC maps. The localization of recurrence was correlated with initial GdT1w-MRI and PET data. Results: In 30/41 patients, DWI-MRI showed areas with restricted diffusion (mean ADC-value 0.74 +/- 0.22 mm(2)/s). 66% of GTVs-ADClow were located outside the GdT1w-MRI volume and 76% outside increased FET uptake regions. Furthermore, GTVs-ADClow were only partially included in the high dose volume and received in mean 82% of the reference dose. An adjusted volume including GdT1w-MRI, PET-positive and restricted diffusion areas would imply a GTV increase of 48%. GTV-PET and GdT1w-MRI correlated better with the localization of re-recurrence in comparison to GTV-ADClow. Conclusion: Unexpectedly, GTV-ADClow overlapped only partially with FET-PET and GdT1w-MRI in rGBM. Moreover, GTV-ADClow correlated poorly with later rGBM-recurrences. Seeing as a restricted diffusion is known to correlate with hypercellularity, this imaging discrepancy could only be further explained in histopathological studies. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 33 条
[1]   Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas [J].
Albert, Nathalie L. ;
Weller, Michael ;
Suchorska, Bogdana ;
Galldiks, Norbert ;
Soffietti, Riccardo ;
Kim, Michelle M. ;
La Fougere, Christian ;
Pope, Whitney ;
Law, Ian ;
Arbizu, Javier ;
Chamberlain, Marc C. ;
Vogelbaum, Michael ;
Ellingson, Ben M. ;
Tonn, Joerg C. .
NEURO-ONCOLOGY, 2016, 18 (09) :1199-1208
[2]  
Asao C, 2005, AM J NEURORADIOL, V26, P1455
[3]  
Bilgili Y, 2004, AM J NEURORADIOL, V25, P108
[4]   Differentiation of Tumor Progression from Pseudoprogression in Patients with Posttreatment Glioblastoma Using Multiparametric Histogram Analysis [J].
Cha, J. ;
Kim, S. T. ;
Kim, H. -J. ;
Kim, B. -j. ;
Kim, Y. K. ;
Lee, J. Y. ;
Jeon, P. ;
Kim, K. H. ;
Kong, D. -s. ;
Nam, D. -H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (07) :1309-1317
[5]   Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting [J].
Eidel, Oliver ;
Neumann, Jan-Oliver ;
Burth, Sina ;
Kieslich, Pascal J. ;
Jungk, Christine ;
Sahm, Felix ;
Kickingereder, Philipp ;
Kiening, Karl ;
Unterberg, Andreas ;
Wick, Wolfgang ;
Schlemmer, Heinz-Peter ;
Bendszus, Martin ;
Radbruch, Alexander .
PLOS ONE, 2016, 11 (07)
[6]   Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET [J].
Galldiks, Norbert ;
Dunkl, Veronika ;
Stoffels, Gabriele ;
Hutterer, Markus ;
Rapp, Marion ;
Sabel, Michael ;
Reifenberger, Guido ;
Kebir, Sied ;
Dorn, Franziska ;
Blau, Tobias ;
Herrlinger, Ulrich ;
Hau, Peter ;
Ruge, Maximilian I. ;
Kocher, Martin ;
Goldbrunner, Roland ;
Fink, Gereon R. ;
Drzezga, Alexander ;
Schmidt, Matthias ;
Langen, Karl-Josef .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (05) :685-695
[7]   State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83) [J].
Gregoire, V. ;
Mackie, T. R. .
CANCER RADIOTHERAPIE, 2011, 15 (6-7) :555-559
[8]   L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy [J].
Grosu, AL ;
Weber, WA ;
Riedel, E ;
Jeremic, B ;
Nieder, C ;
Franz, M ;
Gumprecht, H ;
Jaeger, R ;
Schwaiger, M ;
Molls, M .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (01) :64-74
[9]   Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy [J].
Grosu, AL ;
Weber, WA ;
Franz, M ;
Stärk, S ;
Piert, M ;
Thamm, R ;
Gumprecht, H ;
Schwaiger, M ;
Molls, M ;
Nieder, C .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 63 (02) :511-519
[10]   Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a linac:: First clinical experience [J].
Grosu, AL ;
Lachner, R ;
Wiedenmann, N ;
Stärk, S ;
Thamm, R ;
Kneschaurek, P ;
Schwaiger, M ;
Molls, M ;
Weber, WA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (05) :1450-1463