The Quasiconvex Envelope of Conformally Invariant Planar Energy Functions in Isotropic Hyperelasticity

被引:5
作者
Martin, Robert J. [1 ]
Voss, Jendrik [1 ]
Ghiba, Ionel-Dumitrel [2 ,3 ]
Sander, Oliver [4 ]
Neff, Patrizio [1 ]
机构
[1] Univ Duisburg Essen, Chair Nonlinear Anal & Modeling, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
[2] Alexandru Ioan Cuza Univ, Dept Math, Blvd Carol I,11, Iasi 700506, Romania
[3] Romanian Acad, Iasi Branch, Octav Mayer Inst Math, Iasi 700505, Romania
[4] Tech Univ Dresden, Inst Numer Math, Zellescher Weg 12-14, D-01069 Dresden, Germany
关键词
Conformal invariance; Quasiconvexity; Rank-one convexity; Quasiconvex envelopes; Nonlinear elasticity; Finite isotropic elasticity; Hyperelasticity; Quasiconformal maps; Distortion; Linear distortion; Polyconvexity; Relaxation; Microstructure; Conformal energy; Grotzsch problem; Teichmuller mapping; RANK-ONE-CONVEX; OPTIMAL-DESIGN; RELAXATION; POLYCONVEXITY; EXISTENCE; APPROXIMATION; CONVERGENCE; COMPUTATION; MAPPINGS; CALCULUS;
D O I
10.1007/s00332-020-09639-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider conformally invariant energies W on the group GL (+) (2) of 2x2-matrices with positive determinant, i.e., W : GL(+) (2) -> R such that W(AFB) = W(F) for all A, B is an element of {a R is an element of GL(+) (2) vertical bar a is an element of (0, infinity), R is an element of SO(2)}, where SO(2) denotes the special orthogonal group and provides an explicit formula for the (notoriously difficult to compute) quasiconvex envelope of these functions. Our results, which are based on the representation W(F) = h (lambda(1)/lambda(2)) of W in terms of the singular values lambda(1), lambda(2) of F, are applied to a number of example energies in order to demonstrate the convenience of the singular-value-based expression compared to the more common representation in terms of the distortion K := 1/2 parallel to F parallel to(2)/det F. Applying our results, we answer a conjecture by Adamowicz (in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni, vol 18(2), pp 163, 2007) and discuss a connection between polyconvexity and the Grotzsch free boundary value problem. Special cases of our results can also be obtained from earlier works by Astala et al. (Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, 2008) and Yan (Trans Am Math Soc 355(12):4755-4765, 2003). Since the restricted domain of the energy functions in question poses additional difficulties with respect to the notion of quasiconvexity compared to the case of globally defined real-valued functions, we also discuss more general properties related to the W-1,W- p-quasiconvex envelope on the domain GL(+) (n) which, in particular, ensure that a stricter version of Dacorogna's formula is applicable to conformally invariant energies on GL(+) (2).
引用
收藏
页码:2885 / 2923
页数:39
相关论文
共 83 条
  • [1] Adamowicz T, 2007, REND LINCEI-MAT APPL, V18, P163
  • [2] Alberge V, 2015, ARXIV151101444
  • [3] Infinite-order laminates in a model in crystal plasticity
    Albin, Nathan
    Conti, Sergio
    Dolzmann, Georg
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 685 - 708
  • [4] [Anonymous], 2002, GEOMETRY MECH DYNAMI, DOI DOI 10.1007/0-387-21791-6_1
  • [5] ON THE COMPUTATION OF THE RANK-ONE CONVEX HULL OF A FUNCTION
    Aranda, Ernesto
    Pedregal, Pablo
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 22 (05) : 1772 - 1790
  • [6] Deformations of Annuli with Smallest Mean Distortion
    Astala, K.
    Iwaniec, T.
    Martin, G.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (03) : 899 - 921
  • [7] Astala K, 2012, J AM MATH SOC, V25, P507
  • [8] Ball J. M., 1977, NONL AN MECH HER WAT, V1, P187
  • [9] BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
  • [10] BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992