OsLEA3-2, an Abiotic Stress Induced Gene of Rice Plays a Key Role in Salt and Drought Tolerance

被引:155
|
作者
Duan, Jianli [1 ,2 ]
Cai, Weiming [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing, Peoples R China
来源
PLOS ONE | 2012年 / 7卷 / 09期
基金
中国国家自然科学基金;
关键词
EMBRYOGENESIS ABUNDANT PROTEINS; LEA PROTEINS; ARABIDOPSIS-THALIANA; ABSCISIC-ACID; WATER-STRESS; SACCHAROMYCES-CEREVISIAE; SEQUENCE-ANALYSIS; FREEZING TOLERANCE; PLANT DESICCATION; EXPRESSION;
D O I
10.1371/journal.pone.0045117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] OsWRKY97, an Abiotic Stress-Induced Gene of Rice, Plays a Key Role in Drought Tolerance
    Lv, Miaomiao
    Hou, Dejia
    Wan, Jiale
    Ye, Taozhi
    Zhang, Lin
    Fan, Jiangbo
    Li, Chunliu
    Dong, Yilun
    Chen, Wenqian
    Rong, Songhao
    Sun, Yihao
    Xu, Jinghong
    Cai, Liangjun
    Gao, Xiaoling
    Zhu, Jianqing
    Huang, Zhengjian
    Xu, Zhengjun
    Li, Lihua
    PLANTS-BASEL, 2023, 12 (18):
  • [2] Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance
    Dalal, Monika
    Tayal, Deepti
    Chinnusamy, Viswanathan
    Bansal, Kailash C.
    JOURNAL OF BIOTECHNOLOGY, 2009, 139 (02) : 137 - 145
  • [3] The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages
    Guo, Changkui
    Ge, Xiaochun
    Ma, Hong
    PLANT MOLECULAR BIOLOGY, 2013, 82 (03) : 239 - 253
  • [4] Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.)
    Hu, Tingzhang
    Zhu, Shanshan
    Tan, Lili
    Qi, Wenhua
    He, Shuai
    Wang, Guixue
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 123 : 68 - 77
  • [5] Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass
    Takeuchi, Kaoru
    Hasegawa, Hisakazu
    Gyohda, Atsuko
    Komatsu, Setsuko
    Okamoto, Takashi
    Okada, Kazunori
    Terakawa, Teruhiko
    Koshiba, Tomokazu
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 127 (01) : 35 - 46
  • [6] OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice
    Shi, Yi
    Chang, Yan-Li
    Wu, Hai-Tao
    Shalmani, Abdullah
    Liu, Wen-Ting
    Li, Wen-Qiang
    Xu, Jian-Wei
    Chen, Kun-Ming
    PLANT CELL REPORTS, 2020, 39 (12) : 1767 - 1784
  • [7] A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis
    Yao, Luming
    Jiang, Yina
    Lu, Xinxin
    Wang, Biao
    Zhou, Pei
    Wu, Tianlong
    MOLECULAR BIOLOGY REPORTS, 2016, 43 (10) : 1089 - 1100
  • [8] ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice
    Zhao, Lifeng
    Hu, Yibing
    Chong, Kang
    Wang, Tai
    ANNALS OF BOTANY, 2010, 105 (03) : 401 - 409
  • [9] Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton
    Shiraku, Margaret L.
    Magwanga, Richard Odongo
    Cai, Xiaoyan
    Kirungu, Joy Nyangasi
    Xu, Yanchao
    Mehari, Teame Gereziher
    Hou, Yuqing
    Wang, Yuhong
    Agong, Stephen Gaya
    Peng, Renhai
    Wang, Kunbo
    Zhou, Zhongli
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [10] A Novel Stress-Induced Sugarcane Gene Confers Tolerance to Drought, Salt and Oxidative Stress in Transgenic Tobacco Plants
    Begcy, Kevin
    Mariano, Eduardo D.
    Gentile, Agustina
    Lembke, Carolina G.
    Zingaretti, Sonia Marli
    Souza, Glaucia M.
    Menossi, Marcelo
    PLOS ONE, 2012, 7 (09):