Continuous synthesis of monodisperse iron@iron oxide core@shell nanoparticles

被引:33
作者
Mahin, Julien [1 ]
Torrente-Murciano, Laura [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会;
关键词
Microreactors; Core-shell nanoparticles; Iron nanoparticles; Mixing; SIZED SILVER NANOPARTICLES; MAGNETIC NANOPARTICLES; FE3O4; NANOPARTICLES; PARTICLE-SIZE; HYPERTHERMIA; MECHANISMS; NM;
D O I
10.1016/j.cej.2020.125299
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The first continuous synthesis of magnetic Fe@Fe3O4 core@shell nanoparticles with a metallic core is presented herein with precise control over size, narrow size distribution and a high production rate of 2.6 g per hour. This approach opens the door to large-scale production for their deployment in a range of applications such as drug delivery, separation, MRI contrasting agents, magnetically separable catalysts, magnetic hyperthermia for cancer treatment, etc. A systematic study of key reaction parameters in continuous microreactors reveal the main mechanistic steps involved in the thermal decomposition of the iron pentacarbonyl precursor. The presence of surfactants enables not only the post-synthesis particle stabilisation but also facilitates the initial ligand exchange in the precursor and the in situ CO production. We demonstrate that such gas production leads to a combined Dean-Taylor flow regime in the helical microreactors. Optimisation of the flow rate and reactor length leads to a high level of mixing and sufficient residence time (> 12 s) resulting in narrow size distribution and high precursor conversion respectively.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel [J].
Abou Hassan, Ali ;
Sandre, Olivier ;
Cabuil, Valerie ;
Tabeling, Patrick .
CHEMICAL COMMUNICATIONS, 2008, (15) :1783-1785
[2]  
Buschow K H.J., 2006, Handbook of Magnetic Materials
[3]   Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery [J].
Estelrich, Joan ;
Escribano, Elvira ;
Queralt, Josep ;
Antonia Busquets, Maria .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (04) :8070-8101
[4]   Mechanistic insights of the reduction of gold salts in the Turkevich protocol [J].
Gao, Yunhu ;
Torrente-Murciano, Laura .
NANOSCALE, 2020, 12 (04) :2740-2751
[5]   Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition [J].
Glasgow, William ;
Fellows, Ben ;
Qi, Bin ;
Darroudi, Taghi ;
Kitchens, Christopher ;
Ye, Longfei ;
Crawford, Thomas M. ;
Mefford, O. Thompson .
PARTICUOLOGY, 2016, 26 :47-53
[6]  
Günther A, 2006, LAB CHIP, V6, P1487, DOI 10.1039/b609851g
[7]   Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application [J].
Hedayatnasab, Ziba ;
Abnisa, Faisal ;
Daud, Wan Mohd Ashri Wan .
MATERIALS & DESIGN, 2017, 123 :174-196
[8]   Anomalous dependence of particle size on supersaturation in the preparation of iron nanoparticles from iron pentacarbonyl [J].
Huuppola, Maija ;
Zhu, Zhen ;
Johansson, Leena-Sisko ;
Kontturi, Kyosti ;
Laasonen, Kari ;
Johans, Christoffer .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 386 :28-33
[9]   Flow Synthesis of Biocompatible Fe3O4 Nanoparticles: Insight into the Effects of Residence Time, Fluid Velocity, and Tube Reactor Dimension on Particle Size Distribution [J].
Jiao, Mingxia ;
Zeng, Jianfeng ;
Jing, Lihong ;
Liu, Chunyan ;
Gao, Mingyuan .
CHEMISTRY OF MATERIALS, 2015, 27 (04) :1299-1305
[10]   Local Mass Transfer Phenomena and Chemical Selectivity of Gas-Liquid Reactions in Capillaries [J].
Krieger, Waldemar ;
Lamsfuss, Jan ;
Zhang, Wei ;
Kockmann, Norbert .
CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (11) :2134-2143