Deep Learning Techniques for Pattern Recognition in EEG Audio Signal-Processing-Based Eye-Closed and Eye-Open Cases

被引:2
作者
Almukhtar, Firas Husham [1 ]
Ajwad, Asmaa Abbas [2 ]
Kamil, Amna Shibib [3 ]
Jaleel, Refed Adnan [4 ]
Kamil, Raya Adil [3 ]
Mosa, Sarah Jalal [5 ]
机构
[1] Catholic Univ Erbil KRG, Informat Technol Dept, Erbil 44003, Iraq
[2] Univ Diyala, Coll Med, Dept Physiol & Med Phys, Baqubah, Iraq
[3] Al Turath Univ Coll, Dept Med Device Engn, Baghdad, Iraq
[4] Al Nahrain Univ, Dept Informat & Commun Engn, Baghdad, Iraq
[5] Al Farahidi Univ, Coll Engn Tech, Baghdad, Iraq
关键词
signal processing; information retrieval; deep learning vector quantization; feedforward artificial neural network; electroencephalography; classification; NEURAL-NETWORKS; CLASSIFICATION; MUSIC; LOAD;
D O I
10.3390/electronics11234029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, pattern recognition in audio signal processing using electroencephalography (EEG) has attracted significant attention. Changes in eye cases (open or closed) are reflected in distinct patterns in EEG data, gathered across a range of cases and actions. Therefore, the accuracy of extracting other information from these signals depends significantly on the prediction of the eye case during the acquisition of EEG signals. In this paper, we use deep learning vector quantization (DLVQ), and feedforward artificial neural network (F-FANN) techniques to recognize the case of the eye. The DLVQ is superior to traditional VQ in classification issues due to its ability to learn a code-constrained codebook. On initialization by the k-means VQ approach, the DLVQ shows very promising performance when tested on an EEG-audio information retrieval task, while F-FANN classifies EEG-audio signals of eye state as open or closed. The DLVQ model achieves higher classification accuracy, higher F score, precision, and recall, as well as superior classification abilities as compared to the F-FANN.
引用
收藏
页数:16
相关论文
共 42 条
[1]   Developing Disposable EEG Cap for Infant Recordings at the Neonatal Intensive Care Unit [J].
Asayesh, Amirreza ;
Ilen, Elina ;
Metsaranta, Marjo ;
Vanhatalo, Sampsa .
SENSORS, 2022, 22 (20)
[2]   EEG differences between eyes-closed and eyes-open resting conditions [J].
Barry, Robert J. ;
Clarke, Adam R. ;
Johnstone, Stuart J. ;
Magee, Christopher A. ;
Rushby, Jacqueline A. .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (12) :2765-2773
[3]  
Byun B., 2012, INTERSPEECH, V2012, DOI [10.21437/interspeech.2012-555, DOI 10.21437/INTERSPEECH.2012-555]
[4]  
Chan A, 2015, IEEE INT C BIOINFORM, P793, DOI 10.1109/BIBM.2015.7359788
[5]   Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker [J].
Cole, James H. ;
Poudel, Rudra P. K. ;
Tsagkrasoulis, Dimosthenis ;
Caan, Matthan W. A. ;
Steves, Claire ;
Spector, Tim D. ;
Montana, Giovanni .
NEUROIMAGE, 2017, 163 :115-124
[6]   Linking Brain Responses to Naturalistic Music Through Analysis of Ongoing EEG and Stimulus Features [J].
Cong, Fengyu ;
Alluri, Vinoo ;
Nandi, Asoke K. ;
Toiviainen, Petri ;
Fa, Rui ;
Abu-Jamous, Basel ;
Gong, Liyun ;
Craenen, Bart G. W. ;
Poikonen, Hanna ;
Huotilainen, Minna ;
Ristaniemi, Tapani .
IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (05) :1060-1069
[7]   Integration of Multivariate Data Streams With Bandpower Signals [J].
Daehne, Sven ;
Biessmann, Felix ;
Meinecke, Frank C. ;
Mehnert, Jan ;
Fazli, Siamac ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (05) :1001-1013
[8]   Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition [J].
Dahl, George E. ;
Yu, Dong ;
Deng, Li ;
Acero, Alex .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01) :30-42
[9]   Predicting variations of perceptual performance across individuals from neural activity using pattern classifiers [J].
Das, Koel ;
Giesbrecht, Barry ;
Eckstein, Miguel P. .
NEUROIMAGE, 2010, 51 (04) :1425-1437
[10]   Mixed Neural Network Approach for Temporal Sleep Stage Classification [J].
Dong, Hao ;
Supratak, Akara ;
Pan, Wei ;
Wu, Chao ;
Matthews, Paul M. ;
Guo, Yike .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (02) :324-333