Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Promote Vascular Growth In Vivo

被引:56
|
作者
Roura, Santiago [1 ]
Bago, Juli R. [2 ,3 ]
Soler-Botija, Carolina [1 ]
Pujal, Josep M. [1 ]
Galvez-Monton, Carolina [1 ]
Prat-Vidal, Cristina [1 ]
Llucia-Valldeperas, Aida [1 ]
Blanco, Jeronimo [2 ,3 ]
Bayes-Genis, Antoni [1 ,4 ,5 ]
机构
[1] Fundacio Inst Invest Ciencies Salut Germans Trias, ICREC Res Program, Badalona, Spain
[2] CSIC ICCC, Cardiovasc Res Ctr, Barcelona, Spain
[3] Networking Biomed Res Ctr Bioengn Biomat & Nanome, Barcelona, Spain
[4] Univ Hosp Germans Trias & Pujol, Serv Cardiol, Badalona, Spain
[5] Univ Autonoma Barcelona, Dept Med, E-08193 Barcelona, Spain
来源
PLOS ONE | 2012年 / 7卷 / 11期
基金
欧盟第七框架计划;
关键词
ENDOTHELIAL PROGENITOR CELLS; MYOCARDIAL-INFARCTION; HEART-FAILURE; TISSUE-REPAIR; ANGIOGENESIS; EXPRESSION; NEOVASCULARIZATION; DIFFERENTIATION; RECRUITMENT; PHENOTYPE;
D O I
10.1371/journal.pone.0049447
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs), and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2) acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases) and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI). UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+)network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes
    Li, Xingfu
    Duan, Li
    Liang, Yujie
    Zhu, Weimin
    Xiong, Jianyi
    Wang, Daping
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [2] Human umbilical cord blood-derived mesenchymal stem cells and their effect on gliomas
    Shankar, S. K.
    NEUROLOGY INDIA, 2011, 59 (02) : 226 - 228
  • [3] Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells
    Roura, Santiago
    Farre, Jordi
    Hove-Madsen, Leif
    Prat-Vidal, Cristina
    Soler-Botija, Carolina
    Galvez-Monton, Carolina
    Vilalta, Marta
    Bayes-Genis, Antoni
    BASIC RESEARCH IN CARDIOLOGY, 2010, 105 (03) : 419 - 430
  • [4] Promigratory Activity of Oxytocin on Umbilical Cord Blood-Derived Mesenchymal Stem Cells
    Kim, Yong Sook
    Kwon, Jin Sook
    Hong, Moon Hwa
    Kim, Jin
    Song, Chang Hun
    Jeong, Myung Ho
    Cho, Jeong Gwan
    Park, Jong Chun
    Kang, Jung Chae
    Ahn, Youngkeun
    ARTIFICIAL ORGANS, 2010, 34 (06) : 453 - 461
  • [5] Human Umbilical Cord Blood-Derived Stromal Cells Are Superior to Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Inducing Myeloid Lineage Differentiation In Vitro
    Sun, Hao-Ping
    Zhang, Xi
    Chen, Xing-Hua
    Zhang, Cheng
    Gao, Lei
    Feng, Yi-Mei
    Peng, Xian-Gui
    Gao, Li
    STEM CELLS AND DEVELOPMENT, 2012, 21 (09) : 1429 - 1440
  • [6] Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro
    Kang, Xin-Qin
    Zang, Wei-Jin
    Bao, Li-Jun
    Li, Dong-Ling
    Xu, Xiao-Li
    Yu, Xiao-Hang
    CELL BIOLOGY INTERNATIONAL, 2006, 30 (07) : 569 - 575
  • [7] The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro
    Nishiyama, Nobuhiro
    Miyoshi, Shunichiro
    Hida, Naoko
    Uyama, Taro
    Okamoto, Kazuma
    Ikegami, Yukinori
    Miyado, Kenji
    Segawa, Kaoru
    Terai, Masanori
    Sakamoto, Michiie
    Ogawa, Satoshi
    Umezawa, Akihiro
    STEM CELLS, 2007, 25 (08) : 2017 - 2024
  • [8] Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model
    Jung, Kyung Hee
    Shin, Hyun Phil
    Lee, Sun
    Lim, Yun Jeong
    Hwang, Soo Han
    Han, Hoon
    Park, Hwon Kyum
    Chung, Joo-Ho
    Yim, Sung-Vin
    LIVER INTERNATIONAL, 2009, 29 (06) : 898 - 909
  • [9] Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research
    Roura, Santiago
    Pujal, Josep Maria
    Galvez-Monton, Carolina
    Bayes-Genis, Antoni
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [10] Human umbilical cord blood-derived mesenchymal stem cells improve glucose homeostasis in rats with liver cirrhosis
    Jung, Kyung Hee
    Uhm, Yun-Kyung
    Lim, Yun Jeong
    Yim, Sung-Vin
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2011, 39 (01) : 137 - 143