The coupling mechanism of respiratory complex I - A structural and evolutionary perspective

被引:95
作者
Efremov, Rouslan G. [1 ]
Sazanov, Leonid A. [1 ]
机构
[1] MRC, Mitochondrial Biol Unit, Cambridge CB2 0XY, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2012年 / 1817卷 / 10期
基金
英国医学研究理事会;
关键词
NADH:ubiquinone oxidoreductase; Hydrogenase; Modular evolution; Coupling mechanism; Redox reaction; Proton translocation; NADH-UBIQUINONE OXIDOREDUCTASE; IRON-SULFUR CLUSTER; QUINONE OXIDOREDUCTASE; CRYSTAL-STRUCTURE; ELECTRON-TRANSFER; ECH HYDROGENASE; MEMBRANE DOMAIN; CATALYTIC-PROPERTIES; ENERGY-CONSERVATION; MODULAR EVOLUTION;
D O I
10.1016/j.bbabio.2012.02.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex I is a key enzyme of the respiratory chain in many organisms. This multi-protein complex with an intricate evolutionary history originated from the unification of prebuilt modules of hydrogenases and transporters. Using recently determined crystallographic structures of complex I we reanalyzed evolutionarily related complexes that couple oxidoreduction to trans-membrane ion translocation. Our analysis points to the previously unnoticed structural homology of the electron input module of formate dehydrogenlyases and subunit NuoG of complex I. We also show that all related to complex I hydrogenases likely operate via a conformation driven mechanism with structural changes generated in the conserved coupling site located at the interface of subunits NuoB/D/H. The coupling apparently originated once in evolutionary history, together with subunit NuoH joining hydrogenase and transport modules. Analysis of quinone oxidoreduction properties and the structure of complex I allows us to suggest a fully reversible coupling mechanism. Our model predicts that: 1) proton access to the ketone groups of the bound quinone is rigorously controlled by the protein, 2) the negative electric charge of the anionic ubiquinol head group is a major driving force for conformational changes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1785 / 1795
页数:11
相关论文
共 75 条
[21]   Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules [J].
Friedrich, T ;
Weiss, H .
JOURNAL OF THEORETICAL BIOLOGY, 1997, 187 (04) :529-540
[22]   Complex I: A chimaera of a redox and conformation-driven proton pump? [J].
Friedrich, T .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2001, 33 (03) :169-177
[23]   The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases [J].
Friedrich, T ;
Scheide, D .
FEBS LETTERS, 2000, 479 (1-2) :1-5
[24]   The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre [J].
Fritsch, Johannes ;
Scheerer, Patrick ;
Frielingsdorf, Stefan ;
Kroschinsky, Sebastian ;
Friedrich, Baerbel ;
Lenz, Oliver ;
Spahn, Christian M. T. .
NATURE, 2011, 479 (7372) :249-U134
[25]   The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes [J].
Galkin, Alexander ;
Droese, Stefan ;
Brandt, Ulrich .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (12) :1575-1581
[26]   →H+/2(e)over-bar stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles [J].
Galkin, AS ;
Grivennikova, VG ;
Vinogradov, AD .
FEBS LETTERS, 1999, 451 (02) :157-161
[27]   A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase [J].
Goris, Tobias ;
Wait, Annemarie F. ;
Saggu, Miguel ;
Fritsch, Johannes ;
Heidary, Nina ;
Stein, Matthias ;
Zebger, Ingo ;
Lendzian, Friedhelm ;
Armstrong, Fraser A. ;
Friedrich, Baerbel ;
Lenz, Oliver .
NATURE CHEMICAL BIOLOGY, 2011, 7 (05) :310-U87
[28]   Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I [J].
Grgic, L ;
Zwicker, K ;
Kashani-Poor, N ;
Kerscher, S ;
Brandt, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (20) :21193-21199
[29]   Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli [J].
Hakobyan, M ;
Sargsyan, H ;
Bagramyan, K .
BIOPHYSICAL CHEMISTRY, 2005, 115 (01) :55-61
[30]   Electron tunneling in respiratory complex I [J].
Hayashi, Tomoyuki ;
Stuchebrukhov, Alexei A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (45) :19157-19162