Deep Mean-Shift Priors for Image Restoration

被引:0
作者
Bigdeli, Siavash A. [1 ]
Jin, Meiguang [1 ]
Favaro, Paolo [1 ]
Zwicker, Matthias [1 ,2 ]
机构
[1] Univ Bern, Bern, Switzerland
[2] Univ Maryland, College Pk, MD 20742 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
基金
瑞士国家科学基金会;
关键词
FRAMEWORK; FIELDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.
引用
收藏
页数:10
相关论文
共 41 条
  • [1] Alain G, 2014, J MACH LEARN RES, V15, P3563
  • [2] [Anonymous], COMP VIS PATT REC CV
  • [3] [Anonymous], 2016, ARXIV161102862
  • [4] [Anonymous], ARXIV160803981
  • [5] [Anonymous], ARXIV170309245
  • [6] [Anonymous], 2017, ARXIV170403264
  • [7] [Anonymous], ARXIV170309912
  • [8] [Anonymous], 2013, ADV NEURAL INFORM PR
  • [9] [Anonymous], ELECT IMAGING 2006
  • [10] [Anonymous], ARXIV170403488