Continuous-wave highly-efficient low-divergence terahertz wire lasers

被引:44
作者
Biasco, Simone [1 ,2 ]
Garrasi, Katia [1 ,2 ]
Castellano, Fabrizio [1 ,2 ]
Li, Lianhe [3 ]
Beere, Harvey E. [4 ]
Ritchie, David A. [4 ]
Linfield, Edmund H. [3 ]
Davies, A. Giles [3 ]
Vitiello, Miriam S. [1 ,2 ]
机构
[1] CNR, Ist Nanosci, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, Piazza San Silvestro 12, I-56127 Pisa, Italy
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM-CASCADE LASERS; SINGLE-MODE; EMISSION;
D O I
10.1038/s41467-018-03440-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Terahertz (THz) quantum cascade lasers (QCLs) have undergone rapid development since their demonstration, showing high power, broad-tunability, quantum-limited linewidth, and ultra-broadband gain. Typically, to address applications needs, continuous-wave (CW) operation, low-divergent beam profiles and fine spectral control of the emitted radiation, are required. This, however, is very difficult to achieve in practice. Lithographic patterning has been extensively used to this purpose (via distributed feedback (DFB), photonic crystals or microcavities), to optimize either the beam divergence or the emission frequency, or, both of them simultaneously, in third-order DFBs, via a demanding fabrication procedure that precisely constrains the mode index to 3. Here, we demonstrate wire DFB THz QCLs, in which feedback is provided by a sinusoidal corrugation of the cavity, defining the frequency, while light extraction is ensured by an array of surface holes. This new architecture, extendable to a broad range of far-infrared frequencies, has led to the achievement of low-divergent beams (10 degrees), single-mode emission, high slope efficiencies (250 mW/A), and stable CW operation.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Low-divergence single-mode terahertz quantum cascade laser [J].
Amanti, M. I. ;
Fischer, M. ;
Scalari, G. ;
Beck, M. ;
Faist, J. .
NATURE PHOTONICS, 2009, 3 (10) :586-590
[2]   Low divergence Terahertz photonic-wire laser [J].
Amanti, Maria I. ;
Scalari, Giacomo ;
Castellano, Fabrizio ;
Beck, Mattias ;
Faist, Jerome .
OPTICS EXPRESS, 2010, 18 (06) :6390-6395
[3]   Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage [J].
Amanti, Maria I. ;
Scalari, Giacomo ;
Terazzi, Romain ;
Fischer, Milan ;
Beck, Mattias ;
Faist, Jerome ;
Rudra, Alok ;
Gallo, Pascal ;
Kapon, Eli .
NEW JOURNAL OF PHYSICS, 2009, 11
[4]   Multimode, Aperiodic Terahertz Surface-Emitting Laser Resonators [J].
Biasco, Simone ;
Li, Lianhe ;
Linfield, Edmund H. ;
Davies, A. Giles ;
Vitiello, Miriam S. .
PHOTONICS, 2016, 3 (02)
[5]   Distributed feedback terahertz frequency quantum cascade lasers with dual periodicity gratings [J].
Castellano, F. ;
Zanotto, S. ;
Li, L. H. ;
Pitanti, A. ;
Tredicucci, A. ;
Linfield, E. H. ;
Davies, A. G. ;
Vitiello, M. S. .
APPLIED PHYSICS LETTERS, 2015, 106 (01)
[6]   Tuning a microcavity-coupled terahertz laser [J].
Castellano, Fabrizio ;
Bianchi, Vezio ;
Li, Lianhe ;
Zhu, Jingxuan ;
Tredicucci, Alessandro ;
Linfield, Edmund H. ;
Davies, A. Giles ;
Vitiello, Miriam S. .
APPLIED PHYSICS LETTERS, 2015, 107 (26)
[7]   Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions [J].
Chassagneux, Y. ;
Colombelli, R. ;
Maineult, W. ;
Barbieri, S. ;
Beere, H. E. ;
Ritchie, D. A. ;
Khanna, S. P. ;
Linfield, E. H. ;
Davies, A. G. .
NATURE, 2009, 457 (7226) :174-178
[8]  
Eisele M, 2014, NAT PHOTONICS, V8, P841, DOI [10.1038/nphoton.2014.225, 10.1038/NPHOTON.2014.225]
[9]   Terahertz microcavity quantum-cascade lasers [J].
Fasching, G ;
Benz, A ;
Unterrainer, K ;
Zobl, R ;
Andrews, AM ;
Roch, T ;
Schrenk, W ;
Strasser, G .
APPLIED PHYSICS LETTERS, 2005, 87 (21) :1-3
[10]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876