Polar manifolds and actions

被引:21
|
作者
Grove, Karsten [1 ]
Ziller, Wolfgang [2 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Group actions; sections; rationally elliptic; COHOMOGENEITY ONE MANIFOLDS; RIEMANNIAN FOLIATIONS; EVEN DIMENSION; CURVATURE; CLASSIFICATION; HYPERPOLAR; SPHERES;
D O I
10.1007/s11784-012-0087-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group action is called polar if there exists an immersed submanifold (a section) which intersects all orbits orthogonally. We show how to construct a manifold admitting a polar group action by prescribing its isotropy groups along a fundamental domain in the section. This generalizes a classical construction for cohomogeneity-one manifolds.We give many examples showing the richness of this class of group actions and relate the topology of the section to the topology of the manifold.
引用
收藏
页码:279 / 313
页数:35
相关论文
共 50 条
  • [1] Polar manifolds and actions
    Karsten Grove
    Wolfgang Ziller
    Journal of Fixed Point Theory and Applications, 2012, 11 : 279 - 313
  • [2] On homogeneous manifolds whose isotropy actions are polar
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    Kollross, Andreas
    MANUSCRIPTA MATHEMATICA, 2020, 161 (1-2) : 15 - 34
  • [3] Totally Geodesic Submanifolds and Polar Actions on Stiefel Manifolds
    Gorodski, Claudio
    Kollross, Andreas
    Rodriguez-Vazquez, Alberto
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [4] Torus actions on rationally elliptic manifolds
    Galaz-Garcia, F.
    Kerin, M.
    Radeschi, M.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 197 - 221
  • [5] Some remarks on polar actions
    Gorodski, Claudio
    Kollross, Andreas
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (01) : 43 - 58
  • [6] Low dimensional polar actions
    Gozzi, Francisco J.
    GEOMETRIAE DEDICATA, 2015, 175 (01) : 219 - 247
  • [7] GKM actions on cohomogeneity one manifolds
    Goertsches, Oliver
    Loiudice, Eugenia
    Russo, Giovanni
    FORUM MATHEMATICUM, 2023, 35 (02) : 391 - 407
  • [8] Finite group actions on Kervaire manifolds
    Crowley, Diarmuid
    Hambleton, Ian
    ADVANCES IN MATHEMATICS, 2015, 283 : 88 - 129
  • [9] Torus actions on rationally elliptic manifolds
    F. Galaz-García
    M. Kerin
    M. Radeschi
    Mathematische Zeitschrift, 2021, 297 : 197 - 221
  • [10] Low cohomogeneity and polar actions on exceptional compact Lie groups
    Kollross, Andreas
    TRANSFORMATION GROUPS, 2009, 14 (02) : 387 - 415