Thermodynamic picture of ultrafast charge transport in graphene

被引:152
作者
Mics, Zoltan [1 ]
Tielrooij, Klaas-Jan [1 ,2 ]
Parvez, Khaled [1 ]
Jensen, Soren A. [1 ]
Ivanov, Ivan [1 ]
Feng, Xinliang [1 ]
Muellen, Klaus [1 ]
Bonn, Mischa [1 ]
Turchinovich, Dmitry [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
CARRIER MULTIPLICATION; HIGH-FREQUENCY; CONDUCTIVITY; TRANSISTORS; DYNAMICS;
D O I
10.1038/ncomms8655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The outstanding charge transport properties of graphene enable numerous electronic applications of this remarkable material, many of which are expected to operate at ultrahigh speeds. In the regime of ultrafast, sub-picosecond electric fields, however, the very high conduction properties of graphene are not necessarily preserved, with the physical picture explaining this behaviour remaining unclear. Here we show that in graphene, the charge transport on an ultrafast timescale is determined by a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas. The energy of ultrafast electric fields applied to graphene is converted into the thermal energy of its entire charge carrier population, near-instantaneously raising the electronic temperature. The dynamic interplay between heating and cooling of the electron gas ultimately defines the ultrafast conductivity of graphene, which in a highly nonlinear manner depends on the dynamics and the strength of the applied electric fields.
引用
收藏
页数:7
相关论文
共 54 条
  • [1] Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns
    Alonso-Gonzalez, P.
    Nikitin, A. Y.
    Golmar, F.
    Centeno, A.
    Pesquera, A.
    Velez, S.
    Chen, J.
    Navickaite, G.
    Koppens, F.
    Zurutuza, A.
    Casanova, F.
    Hueso, L. E.
    Hillenbrand, R.
    [J]. SCIENCE, 2014, 344 (6190) : 1369 - 1373
  • [2] [Anonymous], 2006, NONLINEAR FIBER OPTI
  • [3] Ashcroft N., 2011, Solid State Physics
  • [4] Carbon-based electronics
    Avouris, Phaedon
    Chen, Zhihong
    Perebeinos, Vasili
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (10) : 605 - 615
  • [5] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [6] Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature
    Boubanga-Tombet, S.
    Chan, S.
    Watanabe, T.
    Satou, A.
    Ryzhii, V.
    Otsuji, T.
    [J]. PHYSICAL REVIEW B, 2012, 85 (03):
  • [7] Ultrafast nonequilibrium carrier dynamics in a single graphene layer
    Breusing, M.
    Kuehn, S.
    Winzer, T.
    Malic, E.
    Milde, F.
    Severin, N.
    Rabe, J. P.
    Ropers, C.
    Knorr, A.
    Elsaesser, T.
    [J]. PHYSICAL REVIEW B, 2011, 83 (15)
  • [8] Ultrafast collinear scattering and carrier multiplication in graphene
    Brida, D.
    Tomadin, A.
    Manzoni, C.
    Kim, Y. J.
    Lombardo, A.
    Milana, S.
    Nair, R. R.
    Novoselov, K. S.
    Ferrari, A. C.
    Cerullo, G.
    Polini, M.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [9] Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/NNANO.2014.182, 10.1038/nnano.2014.182]
  • [10] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162