Estimation for Runway Friction Coefficient Based on Multi-Sensor Information Fusion and Model Correlation

被引:16
|
作者
Niu, Yadong [1 ]
Zhang, Sixiang [1 ]
Tian, Guangjun [1 ]
Zhu, Huabo [1 ]
Zhou, Wei [1 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin 300130, Peoples R China
关键词
tire-runway friction; multi-sensor information fusion; sensor system; neural network; ground friction coefficient; aircraft braking friction coefficient; correlation model; mobile weather-runway-tire system; BRAKE CONTROL; TIRE; PERFORMANCE; SYSTEM;
D O I
10.3390/s20143886
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Friction is a crucial factor affecting air accident occurrence on landing or taking off. Tire-runway friction directly contributes to aircraft stability on land. Therefore, an accurate friction estimation is a rising issue for all stakeholders. This paper summarizes the existing measurement methods, and a multi-sensor information fusion scheme is proposed to estimate the friction coefficient between the tire and the runway. Acoustic sensors, optical sensors, tread sensors, and other physical sensors form a sensor system that is used to measure friction-related parameters and fuse them through a neural network. So far, many attempts have been made to link the ground friction coefficient with the aircraft braking friction coefficient. The models that have been developed include the International Runway Friction Index (IRFI), Canada Runway Friction Index (CRFI), and other fitting models. Additionally, this paper attempts to correlate the output of the neural network (estimated friction coefficient) with the correlation model to predict the friction coefficient between the tire and the runway when the aircraft brakes. The sensor system proposed in this paper can be regarded as a mobile weather-runway-tire system, which can estimate the friction coefficient by integrating the runway surface conditions and the tire conditions, and fully consider their common effects. The role of the correlation model is to convert the ground friction coefficient to the grade of the aircraft braking friction coefficient and the information is finally reported to the pilots so that they can make better decisions.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] An Intelligent Grinding System based on Multi-sensor information fusion
    Han, Qiushi
    Sun, Zhiyong
    Yang, Zhanxi
    CJCM: 5TH CHINA-JAPAN CONFERENCE ON MECHATRONICS 2008, 2008, : 129 - 132
  • [22] Front vehicle detection based on multi-sensor information fusion
    Jia P.
    Liu Q.
    Peng K.
    Li Z.
    Wang Q.
    Hua Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (06):
  • [23] Multi-sensor information fusion based on rough set theory
    Yuan, Xin
    Zhu, Qi-Dan
    Lan, Hai
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2006, 38 (10): : 1669 - 1672
  • [24] Based on Multi-sensor Information Fusion Algorithm of TPMS Research
    Zhou Yulan
    Zang Yanhong
    Lin Yahong
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 786 - 792
  • [25] Fault tolerant multi-sensor fusion based on the information gain
    Al Hage, Joelle
    El Najjar, Maan E.
    Pomorski, Denis
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [26] Fault diagnosis of robots based on multi-sensor information fusion
    Wang, Xiu-Qing
    Hou, Zeng-Guang
    Zeng, Hui
    Lü, Feng
    Pan, Shi-Ying
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2015, 49 (06): : 793 - 798
  • [27] Wavelet-Based Multi-Sensor Optimal Information Fusion
    Cai, M.
    Li, J. X.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 523 - 526
  • [28] Fault diagnosis method based on multi-sensor information fusion
    Zhao, Jianwei
    Zhao, Jiang
    Guo, Zhixin
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2007, 28 (SUPPL. 5): : 86 - 89
  • [29] A NEW METHOD OF MULTI-SENSOR INFORMATION FUSION BASED ON SVM
    Li, Zhi-Xin
    Ma, Yong-Guang
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 925 - 929
  • [30] The expert network for factory based on multi-sensor information fusion
    Sun, A
    He, XW
    Xu, CS
    Chen, X
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 348 - 352