Complex poles and spectral function of Yang-Mills theory

被引:26
|
作者
Hayashi, Yui [1 ]
Kondo, Kei-Ichi [1 ,2 ]
机构
[1] Chiba Univ, Dept Phys, Grad Sch Sci & Engn, Chiba 2638522, Japan
[2] Chiba Univ, Grad Sch Sci, Dept Phys, Chiba 2638522, Japan
关键词
INFRARED BEHAVIOR; GAUGE-THEORIES; QUARK; QUANTIZATION; MODEL;
D O I
10.1103/PhysRevD.99.074001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mills model with one-loop quantum corrections, which is identified with a low-energy effective theory of the Yang-Mills theory, to show that the gluon propagator in this model has a pair of complex conjugate poles or "tachyonic" poles of multiplicity two, in accordance with the fact that the gluon field has a negative spectral function, while the ghost propagator has at most one "unphysical" pole. Finally, we discuss implications of these results for gluon confinement and other nonperturbative aspects of the Yang-Mills theory.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Nonperturbative finite-temperature Yang-Mills theory
    Cyrol, Anton K.
    Mitter, Mario
    Pawlowski, Jan M.
    Strodthoff, Nils
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [22] Cosmic strings from pure Yang-Mills theory
    Yamada, Masaki
    Yonekura, Kazuya
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [23] Extended N=1 super Yang-Mills theory
    Ferrari, Frank
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [24] Quantization of Yang-Mills theory in de Sitter spacetime
    Shaikh, Aasiya
    Faizal, Mir
    Shah, Naveed Ahmad
    ANNALS OF PHYSICS, 2024, 465
  • [25] Lorentz violating gaugeon formalism of Yang-Mills theory
    Shah, Mushtaq B.
    Ganai, Prince A.
    Dar, W. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2019, 34 (05):
  • [26] BRST renormalization of the first order Yang-Mills theory
    Frenkel, J.
    Taylor, John C.
    ANNALS OF PHYSICS, 2017, 387 : 1 - 13
  • [27] Variational approach to Yang-Mills theory at finite temperatures
    Reinhardt, H.
    Campagnari, D. R.
    Szczepaniak, A. P.
    PHYSICAL REVIEW D, 2011, 84 (04):
  • [28] Vertex functions of Coulomb gauge Yang-Mills theory
    Huber, Markus Q.
    Campagnari, Davide R.
    Reinhardt, Hugo
    PHYSICAL REVIEW D, 2015, 91 (02):
  • [29] Topologically massive Yang-Mills theory and link invariants
    Yildirim, Tuna
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (07):
  • [30] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2011, 83 (02):