Spinal circuits for motor learning

被引:30
作者
Brownstone, Robert M. [1 ,2 ]
Bui, Tuan V. [3 ,4 ]
Stifani, Nicolas [2 ]
机构
[1] Dalhousie Univ, Dept Surg Neurosurg, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Med Neurosci, Halifax, NS B3H 4R2, Canada
[3] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada
[4] Univ Ottawa, Ctr Neural Dynam, Ottawa, ON K1N 6N5, Canada
基金
加拿大健康研究院; 芬兰科学院;
关键词
KCL COTRANSPORTER KCC2; CORD-INJURY; CEREBRAL-PALSY; SYNAPTIC PLASTICITY; RHYTHMIC MOVEMENTS; LOCOMOTOR RECOVERY; CEREBELLAR STROKE; SENSORY FEEDBACK; AXON COLLATERALS; GENE-EXPRESSION;
D O I
10.1016/j.conb.2015.04.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Studies of motor learning have largely focussed on the cerebellum, and have provided key concepts about neural circuits required. However, other parts of the nervous system are involved in learning, as demonstrated by the capacity to 'train' spinal circuits to produce locomotion following spinal cord injury. While somatosensory feedback is necessary for spinal motor learning, feed forward circuits within the spinal cord must also contribute. In fact, motoneurons themselves could act as comparators that integrate feed forward and feedback inputs, and thus contribute to motor learning. Application of cerebellar-derived principles to spinal circuitry leads to testable predictions. of spinal organization required for motor learning.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 81 条
[31]   A HIERARCHICAL NEURAL-NETWORK MODEL FOR CONTROL AND LEARNING OF VOLUNTARY MOVEMENT [J].
KAWATO, M ;
FURUKAWA, K ;
SUZUKI, R .
BIOLOGICAL CYBERNETICS, 1987, 57 (03) :169-185
[32]   Functional recovery after rehabilitation for cerebellar stroke [J].
Kelly, PJ ;
Stein, J ;
Shafqat, S ;
Eskey, C ;
Doherty, D ;
Chang, Y ;
Kurina, A ;
Furie, KL .
STROKE, 2001, 32 (02) :530-534
[33]   A temporal basis for predicting the sensory consequences of motor commands in an electric fish [J].
Kennedy, Ann ;
Wayne, Greg ;
Kaifosh, Patrick ;
Alvina, Karina ;
Abbott, L. F. ;
Sawtell, Nathaniel B. .
NATURE NEUROSCIENCE, 2014, 17 (03) :416-422
[34]   Recovery of Upper Limb Function After Cerebellar Stroke Lesion Symptom Mapping and Arm Kinematics [J].
Konczak, Juergen ;
Pierscianek, Daniela ;
Hirsiger, Sarah ;
Bultmann, Uta ;
Schoch, Beate ;
Gizewski, Elke R. ;
Timmann, Dagmar ;
Maschke, Matthias ;
Frings, Markus .
STROKE, 2010, 41 (10) :2191-2200
[35]   Consensus Paper: The Cerebellum's Role in Movement and Cognition [J].
Koziol, Leonard F. ;
Budding, Deborah ;
Andreasen, Nancy ;
D'Arrigo, Stefano ;
Bulgheroni, Sara ;
Imamizu, Hiroshi ;
Ito, Masao ;
Manto, Mario ;
Marvel, Cherie ;
Parker, Krystal ;
Pezzulo, Giovanni ;
Ramnani, Narender ;
Riva, Daria ;
Schmahmann, Jeremy ;
Vandervert, Larry ;
Yamazaki, Tadashi .
CEREBELLUM, 2014, 13 (01) :151-177
[36]   Human sensorimotor learning: adaptation, skill, and beyond [J].
Krakauer, John W. ;
Mazzoni, Pietro .
CURRENT OPINION IN NEUROBIOLOGY, 2011, 21 (04) :636-644
[37]   Adaptations of motoneuron properties to chronic compensatory muscle overload [J].
Krutki, P. ;
Haluszka, A. ;
Mrowczynski, W. ;
Gardiner, P. F. ;
Celichowski, J. .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 113 (07) :2769-2777
[38]   The relative roles of feedforward and feedback in the control of rhythmic movements [J].
Kuo, AD .
MOTOR CONTROL, 2002, 6 (02) :129-145
[39]  
Leblond H, 2003, J NEUROSCI, V23, P11411
[40]   Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum [J].
Lee, Ka Hung ;
Mathews, Paul J. ;
Reeves, Alexander M. B. ;
Choe, Katrina Y. ;
Jami, Shekib A. ;
Serrano, Raul E. ;
Otis, Thomas S. .
NEURON, 2015, 86 (02) :529-540