Spinal circuits for motor learning

被引:30
作者
Brownstone, Robert M. [1 ,2 ]
Bui, Tuan V. [3 ,4 ]
Stifani, Nicolas [2 ]
机构
[1] Dalhousie Univ, Dept Surg Neurosurg, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Dept Med Neurosci, Halifax, NS B3H 4R2, Canada
[3] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada
[4] Univ Ottawa, Ctr Neural Dynam, Ottawa, ON K1N 6N5, Canada
基金
加拿大健康研究院; 芬兰科学院;
关键词
KCL COTRANSPORTER KCC2; CORD-INJURY; CEREBRAL-PALSY; SYNAPTIC PLASTICITY; RHYTHMIC MOVEMENTS; LOCOMOTOR RECOVERY; CEREBELLAR STROKE; SENSORY FEEDBACK; AXON COLLATERALS; GENE-EXPRESSION;
D O I
10.1016/j.conb.2015.04.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Studies of motor learning have largely focussed on the cerebellum, and have provided key concepts about neural circuits required. However, other parts of the nervous system are involved in learning, as demonstrated by the capacity to 'train' spinal circuits to produce locomotion following spinal cord injury. While somatosensory feedback is necessary for spinal motor learning, feed forward circuits within the spinal cord must also contribute. In fact, motoneurons themselves could act as comparators that integrate feed forward and feedback inputs, and thus contribute to motor learning. Application of cerebellar-derived principles to spinal circuitry leads to testable predictions. of spinal organization required for motor learning.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 81 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback [J].
Akay, Turgay ;
Tourtellotte, Warren G. ;
Arber, Silvia ;
Jessell, Thomas M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (47) :16877-16882
[3]   Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans [J].
Angeli, Claudia A. ;
Edgerton, V. Reggie ;
Gerasimenko, Yury P. ;
Harkema, Susan J. .
BRAIN, 2014, 137 :1394-1409
[4]  
Barbeau H, 2006, NEUROLOGY, V67, P1900, DOI 10.1212/01.wnl.0000249080.15391.6d
[5]   DURATION OF PLASTIC CHANGE IN A MODIFIABLE EFFERENCE COPY [J].
BELL, CC .
BRAIN RESEARCH, 1986, 369 (1-2) :29-36
[6]   Synaptic plasticity in a cerebellum-like structure depends on temporal order [J].
Bell, CC ;
Han, VZ ;
Sugawara, Y ;
Grant, K .
NATURE, 1997, 387 (6630) :278-281
[7]   Predicting and correcting ataxia using a model of cerebellar function [J].
Bhanpuri, Nasir H. ;
Okamura, Allison M. ;
Bastian, Amy J. .
BRAIN, 2014, 137 :1931-1944
[8]   Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury [J].
Boulenguez, Pascale ;
Liabeuf, Sylvie ;
Bos, Remi ;
Bras, Helene ;
Jean-Xavier, Celine ;
Brocard, Cecile ;
Stil, Aurelie ;
Darbon, Pascal ;
Cattaert, Daniel ;
Delpire, Eric ;
Marsala, Martin ;
Vinay, Laurent .
NATURE MEDICINE, 2010, 16 (03) :302-U97
[9]   Animal-to-animal variability in motor pattern production in adults and during growth [J].
Bucher, D ;
Prinz, AA ;
Marder, E .
JOURNAL OF NEUROSCIENCE, 2005, 25 (07) :1611-1619
[10]   An internal model of a moving visual target in the lateral cerebellum [J].
Cerminara, Nadia L. ;
Apps, Richard ;
Marple-Horvat, Dilwyn E. .
JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (02) :429-442