Wavelet estimation via block thresholding:: A minimax study under Lp risk

被引:0
作者
Chesneau, Christophe [1 ]
机构
[1] Univ Caen, LMNO, Bur 332, F-14032 Caen, France
关键词
Besov spaces; block thresholding; convolution in Gaussian; white noise model; L-p risk; minimax estimation; wavelets;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the asymptotic minimax properties of an adaptive wavelet block thresholding estimator under the L-p risk over Besov balls. It can be viewed as a LP version of the BlockShrink estimator developed by Cai (1999 2002). First we show that it is (near) optimal for numerous statistical models, including certain inverse problems. In this statistical context, it achieves better rates of convergence than the hard thresholding estimator introduced by Donoho and Johnstone (1995). We apply this general result to a deconvolution problem.
引用
收藏
页码:1007 / 1024
页数:18
相关论文
共 17 条
[1]  
Cai TT, 2002, STAT SINICA, V12, P1241
[2]   Adaptive wavelet estimation: A block thresholding and oracle inequality approach [J].
Cai, TT .
ANNALS OF STATISTICS, 1999, 27 (03) :898-924
[3]   Sharp adaptation for inverse problems with random noise [J].
Cavalier, L ;
Tsybakov, A .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (03) :323-354
[4]  
CAVALIER L, 2001, MATH METHODS STAT, V10, P247
[5]  
CIRELSON B, 1976, NORM GAUSSIAN SAMPLE
[6]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[7]   On minimax wavelet estimators [J].
Delyon, B ;
Juditsky, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) :215-228
[8]  
Donoho D. L., 1993, Applied and Computational Harmonic Analysis, V1, P100, DOI 10.1006/acha.1993.1008
[9]   Unconditional bases and bit-level compression [J].
Donoho, DL .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (04) :388-392
[10]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224