Hematopoietic stem cells do not engraft with absolute efficiencies

被引:88
作者
Camargo, FD
Chambers, SM
Drew, E
McNagny, KM
Goodell, MA
机构
[1] Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77098 USA
[2] Baylor Coll Med, Cell & Mol Biol Program, Houston, TX 77030 USA
[3] Univ British Columbia, Biomed Res Ctr, Vancouver, BC V5Z 1M9, Canada
关键词
D O I
10.1182/blood-2005-02-0655
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hematopoietic stem cells (HSCs) can be isolated from murine bone marrow by their ability to efflux the Hoechst 33342 dye. This method defines an extremely small and hematopoietically potent subset of cells known as the side population (SP). Recent studies suggest that transplanted single SP cells are capable of lymphohematopoietic repopulation at near absolute efficiencies. Here, we carefully reevaluate the hematopoletic potential of individual SP cells and find substantially lower rates of reconstitution. Our strategy involved the cotransplantation of single So cells along with different populations of competitor cells that varied in their self-renewal capacity. Even with minimized HSC competition, SP cells were only able to reconstitute up to 35% of recipient mice. Furthermore, through immunophenotyping and clonal in vitro assays we find that SP cells are virtually homogeneous. Isolation of HSCs on the basis of Hoechst exclusion and a single cell-surface marker allows enrichment levels similar to that obtained with complex multicolor strategies. Altogether, our results indicate that even an extremely homogeneous HSC population, based on phenotype and dye efflux, cannot reconstitute mice at absolute efficiencies.
引用
收藏
页码:501 / 507
页数:7
相关论文
共 29 条
[1]   Upregulation of flt3 expression within the bone marrow Lin-Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity [J].
Adolfsson, J ;
Borge, OJ ;
Bryder, D ;
Theilgaard-Mönch, K ;
Åstrand-Grundström, I ;
Sitnicka, E ;
Sasaki, Y ;
Jacobsen, SEW .
IMMUNITY, 2001, 15 (04) :659-669
[2]   Hematopoietic stem cells engraft in mice with absolute efficiency [J].
Benveniste, P ;
Cantin, C ;
Hyam, D ;
Iscove, NN .
NATURE IMMUNOLOGY, 2003, 4 (07) :708-713
[3]   Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates [J].
Camargo, FD ;
Green, R ;
Capetenaki, Y ;
Jackson, KA ;
Goodell, MA .
NATURE MEDICINE, 2003, 9 (12) :1520-1527
[4]   Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells [J].
Chen, CZ ;
Li, M ;
de Graaf, D ;
Monti, S ;
Göttgens, B ;
Sanchez, MJ ;
Lander, ES ;
Golub, TR ;
Green, AR ;
Lodish, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15468-15473
[5]   Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells [J].
Christensen, JL ;
Weissman, IL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14541-14546
[6]   Modulation of hematopoietic stem cell homing and engraftment by CD26 [J].
Christopherson, KW ;
Hangoc, G ;
Mantel, CR ;
Broxmeyer, HE .
SCIENCE, 2004, 305 (5686) :1000-1003
[7]   Contribution of hematopoietic stem cells to skeletal muscle [J].
Corbel, SY ;
Lee, A ;
Yi, L ;
Duenas, J ;
Brazelton, TR ;
Blau, HM ;
Rossi, FMV .
NATURE MEDICINE, 2003, 9 (12) :1528-1532
[8]   Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species [J].
Goodell, MA ;
Rosenzweig, M ;
Kim, H ;
Marks, DF ;
DeMaria, M ;
Paradis, G ;
Grupp, SA ;
Sieff, CA ;
Mulligan, RC ;
Johnson, RP .
NATURE MEDICINE, 1997, 3 (12) :1337-1345
[9]   Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo [J].
Goodell, MA ;
Brose, K ;
Paradis, G ;
Conner, AS ;
Mulligan, RC .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (04) :1797-1806
[10]   Role of Flk-1 in mouse hematopoietic stem cells [J].
Haruta, H ;
Nagata, Y ;
Todokoro, K .
FEBS LETTERS, 2001, 507 (01) :45-48