Optimization-Free Inverse Design of High-Dimensional Nanoparticle Electrocatalysts Using Multi-target Machine Learning

被引:2
作者
Li, Sichao [1 ]
Ting, Jonathan Y. C. [1 ]
Barnard, Amanda S. [1 ]
机构
[1] Australian Natl Univ, Acton, ACT 2601, Australia
来源
COMPUTATIONAL SCIENCE, ICCS 2022, PT II | 2022年
关键词
Inverse design; Machine learning; Catalysis;
D O I
10.1007/978-3-031-08754-7_39
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Inverse design that directly predicts multiple structural characteristics of nanomaterials based on a set of desirable properties is essential for translating computational predictions into laboratory experiments, and eventually into products. This is challenging due to the high-dimensionality of nanomaterials data which causes an imbalance in the mapping problem, where too few properties are available to predict too many features. In this paper we use multi-target machine learning to directly map the structural features and property labels, without the need for exhaustive data sets or external optimization, and explore the impact of more aggressive feature selection to manage the mapping function. We find that systematically reducing the dimensionality of the feature set improves the accuracy and generalizability of inverse models when interpretable importance profiles from the corresponding forward predictions are used to prioritize inclusion. This allows for a balance between accuracy and efficiency to be established on a case-by-case basis, but raises new questions about the role of domain knowledge and pragmatic preferences in feature prioritization strategies.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 44 条
  • [1] Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges
    Baig, Nadeem
    Kammakakam, Irshad
    Falath, Wail
    [J]. MATERIALS ADVANCES, 2021, 2 (06): : 1821 - 1871
  • [2] Barnard A., 2019, CSIRO DATA COLLECTIO, DOI [10.25919/5d3958d9bf5f7, DOI 10.25919/5D3958D9BF5F7]
  • [3] Nanoinformatics, and the big challenges for the science of small things
    Barnard, A. S.
    Motevatti, B.
    Parker, A. J.
    Fischer, J. M.
    Feigt, C. A.
    Opletal, G.
    [J]. NANOSCALE, 2019, 11 (41) : 19190 - 19201
  • [4] Selecting machine learning models for metallic nanoparticles
    Barnard, Amanda S.
    Opletal, George
    [J]. NANO FUTURES, 2020, 4 (03) : 1 - 12
  • [5] Dynamic evolution of specific catalytic sites on Pt nanoparticles
    Barron, Hector
    Opletal, George
    Tilley, Richard D.
    Barnard, Amanda S.
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (01) : 144 - 151
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [8] Inverse design of nanoparticles for enhanced Raman scattering
    Christiansen, Rasmus E.
    Michon, Jerome
    Benzaouia, Mohammed
    Sigmund, Ole
    Johnson, Steven G.
    [J]. OPTICS EXPRESS, 2020, 28 (04): : 4444 - 4462
  • [9] Searching for alloy configurations with target physical properties: Impurity design via a genetic algorithm inverse band structure approach
    Dudiy, S. V.
    Zunger, Alex
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [10] Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study
    Gonzalez-Gil, R.
    Herrera, C.
    Larrubia, M. A.
    Marino, F.
    Laborde, M.
    Alemany, L. J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (38) : 16786 - 16796