Nonorientable regular maps over linear fractional groups

被引:0
|
作者
Jones, Gareth A. [1 ]
Macaj, Martin [2 ]
Siran, Jozef [3 ,4 ]
机构
[1] Univ Southampton, Southampton, Hants, England
[2] Comenius Univ, Bratislava, Slovakia
[3] Open Univ, Milton Keynes MK7 6AA, Bucks, England
[4] Slovak Univ Technol Bratislava, Bratislava, Slovakia
关键词
Regular map; linear fractional group; SURFACES; REPRESENTATIONS; HYPERMAPS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that for any given hyperbolic pair (k; m) there exist infinitely many regular maps of valence k and face length m on an orientable surface, with automorphism group isomorphic to a linear fractional group. A nonorientable analogue of this result was known to be true for all pairs (k; m) as above with at least one even entry. In this paper we establish the existence of such regular maps on nonorientable surfaces for all hyperbolic pairs.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [41] Classification of regular maps of Euler characteristic-3p
    Conder, Marston
    Nedela, Roman
    Siran, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) : 967 - 981
  • [42] Regular maps with nilpotent automorphism group
    Marston Conder
    Shaofei Du
    Roman Nedela
    Martin Škoviera
    Journal of Algebraic Combinatorics, 2016, 44 : 863 - 874
  • [43] Regular maps with nilpotent automorphism group
    Conder, Marston
    Du, Shaofei
    Nedela, Roman
    Skoviera, Martin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 863 - 874
  • [44] Reflections of regular maps and Riemann surfaces
    Melekoglu, Adnan
    Singerman, David
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) : 921 - 939
  • [45] Regular versus continuous rational maps
    Kucharz, Wojciech
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (12) : 1375 - 1378
  • [46] A Geometric Approach to the Reflections of Regular Maps
    Melekoglu, Adnan
    ARS COMBINATORIA, 2008, 89 : 355 - 367
  • [47] Self-dual and self-petrie-dual regular maps
    Richter, R. Bruce
    Siran, Jozef
    Wang, Yan
    JOURNAL OF GRAPH THEORY, 2012, 69 (02) : 152 - 159
  • [48] Albanese Maps and Fundamental Groups of Varieties With Many Rational Points Over Function Fields
    Javanpeykar, Ariyan
    Rousseau, Erwan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (24) : 19354 - 19398
  • [49] Principal series for general linear groups over finite commutative rings
    Crisp, Tyrone
    Meir, Ehud
    Onn, Uri
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4857 - 4868
  • [50] Regular maps of 2-power order
    Dong-Dong Hou
    Yan-Quan Feng
    Young Soo Kwon
    Journal of Algebraic Combinatorics, 2022, 56 : 475 - 492