Nonorientable regular maps over linear fractional groups

被引:0
|
作者
Jones, Gareth A. [1 ]
Macaj, Martin [2 ]
Siran, Jozef [3 ,4 ]
机构
[1] Univ Southampton, Southampton, Hants, England
[2] Comenius Univ, Bratislava, Slovakia
[3] Open Univ, Milton Keynes MK7 6AA, Bucks, England
[4] Slovak Univ Technol Bratislava, Bratislava, Slovakia
关键词
Regular map; linear fractional group; SURFACES; REPRESENTATIONS; HYPERMAPS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that for any given hyperbolic pair (k; m) there exist infinitely many regular maps of valence k and face length m on an orientable surface, with automorphism group isomorphic to a linear fractional group. A nonorientable analogue of this result was known to be true for all pairs (k; m) as above with at least one even entry. In this paper we establish the existence of such regular maps on nonorientable surfaces for all hyperbolic pairs.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Non-orientable Regular Maps of a Given Type over Linear Fractional Groups
    Siran, Jozef
    GRAPHS AND COMBINATORICS, 2010, 26 (04) : 597 - 602
  • [2] Non-orientable Regular Maps of a Given Type over Linear Fractional Groups
    Jozef Širáň
    Graphs and Combinatorics, 2010, 26 : 597 - 602
  • [3] Groups PSL(3, p) and nonorientable regular maps
    Du, Shao-Fei
    Kwak, Jin Ho
    JOURNAL OF ALGEBRA, 2009, 321 (05) : 1367 - 1382
  • [4] Orientably-Regular Maps on Twisted Linear Fractional Groups
    Erskine, Grahame
    Hrinakova, Katarina
    Siran, Jozef
    ISOMORPHISMS, SYMMETRY AND COMPUTATIONS IN ALGEBRAIC GRAPH THEORY, 2020, 305 : 1 - 35
  • [5] Enumeration of regular maps of given type on twisted linear fractional groups
    Macaj, Martin
    Pavlikova, Sona
    Siran, Jozef
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1668 - 1684
  • [6] On the automorphism groups of regular maps
    Li, Xiaogang
    Tian, Yao
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 23 - 35
  • [7] On the automorphism groups of regular maps
    Xiaogang Li
    Yao Tian
    Journal of Algebraic Combinatorics, 2024, 59 : 23 - 35
  • [8] Regular Cayley maps for dihedral groups
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 84 - 124
  • [9] REGULAR CAYLEY MAPS FOR CYCLIC GROUPS
    Conder, Marston D. E.
    Tucker, Thomas W.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) : 3585 - 3609
  • [10] Regular maps with nilpotent automorphism groups
    Malnic, Aleksander
    Nedela, Roman
    Skoviera, Martin
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (08) : 1974 - 1986