Array-Controlled Ultrasonic Manipulation of Particles in Planar Acoustic Resonator

被引:84
作者
Glynne-Jones, Peter [1 ]
Demore, Christine E. M. [2 ]
Ye, Congwei [1 ]
Qiu, Yongqiang [2 ]
Cochran, Sandy [2 ]
Hill, Martyn [1 ]
机构
[1] Univ Southampton, Sch Engn Sci, Southampton, Hants, England
[2] Univ Dundee, Inst Med Sci & Technol, Dundee, Scotland
基金
英国工程与自然科学研究理事会;
关键词
STANDING-WAVE; ADHERENT CELLS; VIABILITY; DRIVEN; MICROPARTICLES; FIELD;
D O I
10.1109/TUFFC.2012.2316
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasonic particle manipulation tools have many promising applications in life sciences, expanding on the capabilities of current manipulation technologies. In this paper, the ultrasonic manipulation of particles and cells along a microfluidic channel with a piezoelectric array is demonstrated. An array integrated into a planar multilayer resonator structure drives particles toward the pressure nodal plane along the centerline of the channel, then toward the acoustic velocity maximum centered above the subset of elements that are active. Switching the active elements along the array moves trapped particles along the microfluidic channel. A 12-element 1-D array coupled to a rectangular capillary has been modeled and fabricated for experimental testing. The device has a 300-mu m-thick channel for a half-wavelength resonance near 2.5 MHz, with 500 mu m element pitch. Simulation and experiment confirm the expected trapping of particles at the center of the channel and above the set of active elements. Experiments demonstrated the feasibility of controlling the position of particles along the length of the channel by switching the active array elements.
引用
收藏
页码:1258 / 1266
页数:9
相关论文
共 36 条
[1]   Study on the bubble motion control by ultrasonic wave [J].
Abe, Y ;
Kawaji, M ;
Watanabe, T .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2002, 26 (6-7) :817-826
[2]   Molecular adhesion development in a neural cell monolayer forming in an ultrasound trap [J].
Bazou, D ;
Foster, GA ;
Ralphs, JR ;
Coakley, WT .
MOLECULAR MEMBRANE BIOLOGY, 2005, 22 (03) :229-240
[3]   GENE EXPRESSION ANALYSIS OF MOUSE EMBRYONIC STEM CELLS FOLLOWING LEVITATION IN AN ULTRASOUND STANDING WAVE TRAP [J].
Bazou, Despina ;
Kearney, Roisin ;
Mansergh, Fiona ;
Bourdon, Celine ;
Farrar, Jane ;
Wride, Michael .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2011, 37 (02) :321-330
[4]   Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type [J].
Böhm, H ;
Anthony, P ;
Davey, MR ;
Briarty, LG ;
Power, JB ;
Lowe, KC ;
Benes, E ;
Gröschl, M .
ULTRASONICS, 2000, 38 (1-8) :629-632
[5]   Development of a novel compact sonicator for cell disruption [J].
Borthwick, KAJ ;
Coakley, WT ;
McDonnell, MB ;
Nowotny, H ;
Benes, E ;
Gröschl, M .
JOURNAL OF MICROBIOLOGICAL METHODS, 2005, 60 (02) :207-216
[6]   Manipulation of microparticles using phase-controllable ultrasonic standing waves [J].
Courtney, C. R. P. ;
Ong, C. -K. ;
Drinkwater, B. W. ;
Wilcox, P. D. ;
Demore, C. ;
Cochran, S. ;
Glynne-Jones, P. ;
Hill, M. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (04) :E195-E199
[7]   Plasma preparation from whole blood using ultrasound [J].
Cousins, CM ;
Holownia, P ;
Hawkes, JJ ;
Limaye, MS ;
Price, CP ;
Keay, PJ ;
Coakley, WT .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2000, 26 (05) :881-888
[8]   Investigation of cross talk in kerfless annular arrays for high-frequency imaging [J].
Démoré, CEM ;
Brown, JA ;
Lockwood, GR .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (05) :1046-1056
[9]   Robust acoustic particle manipulation: A thin-reflector design for moving particles to a surface [J].
Glynne-Jones, P. ;
Boltryk, R. J. ;
Hill, M. ;
Harris, N. R. ;
Baclet, P. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 126 (03) :EL75-EL79
[10]   Acoustofluidics 9: Modelling and applications of planar resonant devices for acoustic particle manipulation [J].
Glynne-Jones, Peter ;
Boltryk, Rosemary J. ;
Hill, Martyn .
LAB ON A CHIP, 2012, 12 (08) :1417-1426