Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations

被引:93
作者
Paloni, Matteo [1 ]
Bailly, Remy [1 ]
Ciandrini, Luca [1 ]
Barducci, Alessandro [1 ]
机构
[1] Univ Montpellier, Ctr Biochim Struct CBS, CNRS, INSERM, Montpellier, France
关键词
ALPHA-HELICAL STRUCTURE; STACKING INTERACTIONS; CONFORMATIONS; TRANSITION;
D O I
10.1021/acs.jpcb.0c06288
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membraneless organdies are dynamical cellular condensates formed via biomolecular liquid-liquid phase separation of proteins and RNA molecules. Multiple evidence suggests that in several cases disordered proteins are structural scaffolds that drive the condensation by forming a dynamic network of inter- and intramolecular contacts. Despite the blooming research activity in this field, the structural characterization of these entities is very limited, and we still do not understand how the phase behavior is encoded in the amino acid sequences of the scaffolding proteins. Here we exploited explicit-solvent atomistic simulations to investigate the N-terminal disordered region of DEAD-box helicase 4 (NDDX4), which is a well-established model for phase separation. Notably, we determined NDDX4 conformational ensemble at the single-molecule level, and we relied on a "divide-and-conquer" strategy, based on simulations of various protein fragments at high concentration, to probe intermolecular interactions in conditions mimicking real condensates. Our results provide a high-resolution picture of the molecular mechanisms underlying phase separation in agreement with NMR and mutagenesis data and suggest that clusters of arginine and aromatic residues may stabilize the assembly of several condensates.
引用
收藏
页码:9009 / 9016
页数:8
相关论文
共 64 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Liquid-Liquid Phase Separation in Disease [J].
Alberti, Simon ;
Dormann, Dorothee .
ANNUAL REVIEW OF GENETICS, VOL 53, 2019, 53 :171-+
[3]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[4]   Computational and theoretical advances in studies of intrinsically disordered proteins [J].
Best, Robert B. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 42 :147-154
[5]   Protein Phase Separation: A New Phase in Cell Biology [J].
Boeynaems, Steven ;
Alberti, Simon ;
Fawzi, Nicolas L. ;
Mittag, Tanja ;
Polymenidou, Magdalini ;
Rousseau, Frederic ;
Schymkowitz, Joost ;
Shorter, James ;
Wolozin, Benjamin ;
Van den Bosch, Ludo ;
Tompa, Peter ;
Fuxreiter, Monika .
TRENDS IN CELL BIOLOGY, 2018, 28 (06) :420-435
[6]   Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation [J].
Brady, Jacob P. ;
Farber, Patrick J. ;
Sekhar, Ashok ;
Lin, Yi-Hsuan ;
Huang, Rui ;
Bah, Alaji ;
Nott, Timothy J. ;
Chan, Hue Sun ;
Baldwin, Andrew J. ;
Forman-Kay, Julie D. ;
Kay, Lewis E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (39) :E8194-E8203
[7]  
Brangwynne CP, 2015, NAT PHYS, V11, P899, DOI [10.1038/NPHYS3532, 10.1038/nphys3532]
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[10]   LASSI: A lattice model for simulating phase transitions of multivalent proteins [J].
Choi, Jeong-Mo ;
Dar, Furqan ;
Pappu, Rohit, V .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (10)