Quasi-stationary optical solitons with dual-power law nonlinearity

被引:15
作者
Biswas, A [1 ]
机构
[1] Tennessee State Univ, Ctr Excellence ISEM, Dept Math & Phys, Nashville, TN 37209 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.optcom.2004.01.075
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multiple-scale perturbation analysis is used to study the perturbed optical solitons that are governed by the Nonlinear Schrodinger's equation, with dual-power law nonlinearity. We have considered the perturbations due to nonlinear damping and saturable amplification. A new definition of the phase of the soliton is introduced that captures the corrections to the pulse where the standard soliton perturbation theory fails. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 20 条
[1]  
Abdullaev F., 1993, Optical Solitons
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]   Breathing spatial solitons in non-Kerr media [J].
Afanasjev, VV ;
Chu, PL ;
Kivshar, YS .
OPTICS LETTERS, 1997, 22 (18) :1388-1390
[4]  
Agrawal G., 2006, NONLINEAR FIBER OPTI
[5]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[6]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[7]   Spatial solitons in Kerr and Kerr-like media [J].
Akhmediev, NN .
OPTICAL AND QUANTUM ELECTRONICS, 1998, 30 (7-10) :535-569
[8]   Quasi-stationary optical solitons with parabolic law nonlinearity [J].
Biswas, A .
OPTICS COMMUNICATIONS, 2003, 216 (4-6) :427-437
[9]  
BISWAS A, 2003, J PHYS A, V36
[10]   Autosoliton in a fiber with distributed saturable amplifiers [J].
Grigoryan, VS .
OPTICS LETTERS, 1996, 21 (23) :1882-1884