Deflection of a monochromatic THz beam by acousto-optic methods

被引:18
|
作者
Voloshinov, V. B. [1 ]
Nikitin, P. A. [1 ]
Gerasimov, V. V. [2 ]
Knyazev, B. A. [3 ]
Choporova, Yu. Yu. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[2] Russian Acad Sci, Siberian Branch, GI Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[3] Novosibirsk Natl Res State Univ, Novosibirsk 630090, Russia
关键词
acousto-optics; THz range; deflector; germanium; Bragg angle; free-electron laser; GERMANIUM;
D O I
10.1070/QE2013v043n12ABEH015195
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The possibility of controlled deflection of an electromagnetic THz beam of a free-electron laser by acousto-optic (AO) methods has been demonstrated for the first time. The material of the AO deflector was chosen to be single-crystal germanium, which has a fairly large refractive index (n = 4.0) and a relatively low absorption coefficient for electromagnetic waves. The absorption coefficient alpha in germanium is 0.75 +/- 0.02 cm(-1) at a wavelength lambda = 140 mm. The diffracted beam intensity is shown to be maximum at an effective AO interaction length l = 1/alpha. A diffraction efficiency of 0.05 % at a travelling acoustic wave power of 1.0 W is experimentally obtained. It is established that a change in the ultrasonic frequency from 25 to 39 MHz leads to variation in the external Bragg angle in the range from 19.5 degrees to 27.5 degrees. At a fixed Bragg angle theta(B) = 22.4 degrees the frequency band of diffraction is 4.2 +/- 0.1 MHz and the angular range of laser beam scanning reaches 2.5 degrees +/- 0.5 degrees. The results obtained indicate that AO interaction can be used for controlled deflection of electromagnetic THz beams.
引用
收藏
页码:1139 / 1142
页数:4
相关论文
共 50 条
  • [31] Chalcogenide glass ceramics: A high-performing innovative infrared acousto-optic material
    Cao, Zhenfei
    Dai, Shixun
    Ding, Shengjie
    Wang, Min
    Xu, Lulu
    Liu, Chengcheng
    Lin, Changgui
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (14) : 7215 - 7221
  • [32] Acousto-optic filters with arbitrary spectral transmission
    Yushkov, Konstantin B.
    Molchanov, Vladimir Ya.
    OPTICS COMMUNICATIONS, 2015, 355 : 177 - 180
  • [33] Single-photon entanglement at acousto-optic (acousto-gyration) diffraction
    Skab, I
    Kostyrko, M.
    Vlokh, R.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2020, 21 (03) : 152 - 158
  • [34] Acousto-optic modulation of light polarisation in monoclinic crystals
    Chizhikov, A., I
    Naumenko, N. F.
    Yushkov, K. B.
    Molchanov, V. Ya
    Pavlyuk, A. A.
    QUANTUM ELECTRONICS, 2021, 51 (04) : 343 - 347
  • [35] General-purpose acousto-optic connectionist processor
    Naughton, T
    Javadpour, Z
    Keating, J
    Klíma, M
    Rott, J
    OPTICAL ENGINEERING, 1999, 38 (07) : 1170 - 1177
  • [36] Acousto-optic imaging in the middle infrared region of spectrum
    Voloshinov, V
    Gupta, N
    3RD INTERNATIONAL CONFERENCE ON OPTICAL INFORMATION PROCESSING, 1999, 3900 : 62 - 73
  • [37] Acousto-optic diffraction in biaxial crystals possessing considerable optic dispersion
    A. Tchernyatin
    E. Nazarova
    The European Physical Journal Special Topics, 2008, 154 : 217 - 220
  • [38] Acousto-optic and electro-optic modulators for stereoscopic laser videoprojection
    Pommeray, M
    Kastelik, JC
    Gazalet, MG
    Kab, A
    OPTICAL ENGINEERING, 1997, 36 (03) : 957 - 963
  • [39] Calculation of the acousto-optic coupling coefficients in optical fibers
    Acuna Herrera, Rodrigo
    Law, Chiu Tai
    Mafi, Arash
    OPTICS COMMUNICATIONS, 2013, 305 : 217 - 220
  • [40] Acousto-optic interaction in crystals with large acoustic anisotropy
    V. I. Balakshy
    A. S. Voloshin
    Optics and Spectroscopy, 2011, 110 : 788 - 794