A non-qubit quantum adder as one-dimensional cellular automaton

被引:5
|
作者
Wu, C. H. [1 ]
Cain, C. A. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
来源
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES | 2014年 / 59卷
关键词
Cellular Automaton; Aharonov-Bohm effect; Quantum computing; Electronic transport; Turing machine; ALGORITHMS;
D O I
10.1016/j.physe.2014.01.021
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A complete quantum addition machine is presented and compared with methods employing unitary transformations first. A quantum half-adder circuit shown earlier can be implemented into each cell of a 1D cellular automaton. An electric Aharonov-Bohm effect version of the quantum circuit is used to illustrate this implementation. Whatever a quantum Turing machine can achieve is realized in the cellular automata architecture we propose here. The coherence requirement is limited to one cell area. The magnetic flux needed is 0.1 Phi(0), corresponding to 0.414 mT for a ring area of 1 square micron or an electric potential of 0.414 mV at 1 ps with an energy dissipation of 0.041 eV per iteration. Published by Elsevier B.V.
引用
收藏
页码:243 / 247
页数:5
相关论文
共 50 条
  • [21] Bi-SOC-states in one-dimensional random cellular automaton
    Czechowski, Zbigniew
    Budek, Agnieszka
    Bialecki, Mariusz
    CHAOS, 2017, 27 (10)
  • [22] One-dimensional sensitive driving cellular automaton model for traffic flow
    Li, L
    Yu, X
    Dai, SQ
    ACTA PHYSICA SINICA, 2003, 52 (09) : 2121 - 2126
  • [23] CLUSTERING IN THE ONE-DIMENSIONAL 3-COLOR CYCLIC CELLULAR AUTOMATON
    FISCH, R
    ANNALS OF PROBABILITY, 1992, 20 (03): : 1528 - 1548
  • [24] Replication of a Binary Image on a One-Dimensional Cellular Automaton with Linear Rules
    Rao, U. Srinivasa
    Jeganathan, L.
    COMPLEX SYSTEMS, 2018, 27 (04): : 415 - 430
  • [25] Replication and Shift Representation of One-Dimensional Prototype Universal Cellular Automaton
    Guan, Junbiao
    Chen, Fangyue
    JOURNAL OF CELLULAR AUTOMATA, 2013, 8 (3-4) : 299 - 310
  • [27] Simulation of crystallographic changes during recrystallization by one-dimensional cellular automaton
    Bubonyi, T.
    Barkoczy, P.
    11TH HUNGARIAN CONFERENCE ON MATERIALS SCIENCE, 2018, 426
  • [28] Reversibility and quantum coherence in one-dimensional quantum cellular automata
    Centrone, Federico
    Tassi, Camillo
    Barbieri, Marco
    Serafini, Alessio
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [29] One-dimensional cellular automaton traffic flow model based on driving rules
    Qi, Xiuzhen
    Xie, Juan
    Hao, Ruru
    Journal of Information and Computational Science, 2015, 12 (05): : 1845 - 1853
  • [30] One-dimensional cellular automaton model of traffic flow considering dynamic headway
    Zhang Ning-Xi
    Zhu Hui-Bing
    Lin Heng
    Huang Meng-Yuan
    ACTA PHYSICA SINICA, 2015, 64 (02)