A non-qubit quantum adder as one-dimensional cellular automaton

被引:5
|
作者
Wu, C. H. [1 ]
Cain, C. A. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
来源
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES | 2014年 / 59卷
关键词
Cellular Automaton; Aharonov-Bohm effect; Quantum computing; Electronic transport; Turing machine; ALGORITHMS;
D O I
10.1016/j.physe.2014.01.021
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A complete quantum addition machine is presented and compared with methods employing unitary transformations first. A quantum half-adder circuit shown earlier can be implemented into each cell of a 1D cellular automaton. An electric Aharonov-Bohm effect version of the quantum circuit is used to illustrate this implementation. Whatever a quantum Turing machine can achieve is realized in the cellular automata architecture we propose here. The coherence requirement is limited to one cell area. The magnetic flux needed is 0.1 Phi(0), corresponding to 0.414 mT for a ring area of 1 square micron or an electric potential of 0.414 mV at 1 ps with an energy dissipation of 0.041 eV per iteration. Published by Elsevier B.V.
引用
收藏
页码:243 / 247
页数:5
相关论文
共 50 条
  • [1] A quantum cellular automaton for one-dimensional QED
    Arrighi, Pablo
    Beny, Cedric
    Farrelly, Terry
    QUANTUM INFORMATION PROCESSING, 2020, 19 (03)
  • [2] A quantum cellular automaton for one-dimensional QED
    Pablo Arrighi
    Cédric Bény
    Terry Farrelly
    Quantum Information Processing, 2020, 19
  • [3] One-Dimensional Cellular Automaton Transducers
    Kutrib, Martin
    Malcher, Andreas
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 201 - 224
  • [4] A One-Dimensional Physically Universal Cellular Automaton
    Salo, Ville
    Torma, Ilkka
    UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 375 - 386
  • [5] A one-dimensional physically universal cellular automaton
    Salo, Ville
    Törmä, Ilkka
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 10307 LNCS : 375 - 386
  • [6] Transients in a one-dimensional probabilistic cellular automaton
    Bhattacharyya, P
    PHYSICA A, 1997, 245 (3-4): : 472 - 484
  • [7] UNIVERSALITY CLASS OF A ONE-DIMENSIONAL CELLULAR AUTOMATON
    JENSEN, I
    PHYSICAL REVIEW A, 1991, 43 (06): : 3187 - 3189
  • [8] Path-integral solution of the one-dimensional Dirac quantum cellular automaton
    D'Ariano, Giacomo Mauro
    Mosco, Nicola
    Perinotti, Paolo
    Tosini, Alessandro
    PHYSICS LETTERS A, 2014, 378 (43) : 3165 - 3168
  • [9] Critical phenomena in an one-dimensional probabilistic cellular automaton
    Bhattacharyya, P
    PHYSICA A, 1996, 234 (1-2): : 427 - 434
  • [10] Conservative Computing in a One-dimensional Cellular Automaton with Memory
    Martinez, Genaro J.
    Morita, Kenichi
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (04) : 325 - 346