CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges

被引:25
作者
Chen, Xing [2 ]
Pan, Shaoyi [3 ]
Wen, Chengcai [1 ]
Du, Xianfa [4 ]
机构
[1] Xuzhou Med Univ, Huaian Peoples Hosp 2, Dept Rehabil, Affiliated Huaian Hosp, Huaian 223000, Peoples R China
[2] Heidelberg Univ Hosp, Spinal Cord Injury Ctr, Heidelberg, Germany
[3] Guangzhou Univ Chinese Med, Guangdong Prov Hosp Chinese Med, Clin Med Coll 2, Guangzhou, Peoples R China
[4] Univ Sun Yat Sen Univ, Guangzhou, Peoples R China
关键词
CRISPR/Cas9; cancer treatment; technology; application; challenge; CRISPR-CAS9; TECHNOLOGY; GENOME; CELLS; NUCLEASES; ENDONUCLEASE; SENSITIVITY; SURVIVAL; DELIVERY; SYSTEM;
D O I
10.1093/bfgp/elaa001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) is described as RNA mediated adaptive immune system defense, which is naturally found in bacteria and archaea. CRISPR-Cas9 has shown great promise for cancer treatment in cancer immunotherapy, manipulation of cancer genome and epigenome and elimination or inactivation of carcinogenic viral infections. However, many challenges remain to be addressed to increase its efficacy, including off-target effects, editing efficiency, fitness of edited cells, immune response and delivery methods. Here, we explain CRISPR-Cas classification and its general function mechanism for gene editing. Then, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer. Moreover, the challenges and improvements of CRISPR-Cas9 clinical applications will be discussed.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 63 条
[1]  
[Anonymous], 2015, BLOOD, DOI DOI 10.1182/BLOOD.V126.23.2046.2046
[2]   Inhibition of Cyclin-Dependent Kinase 5: A Strategy to Improve Sorafenib Response in Hepatocellular Carcinoma Therapy [J].
Ardelt, Maximilian A. ;
Froehlich, Thomas ;
Martini, Emanuele ;
Mueller, Martin ;
Kanitz, Veronika ;
Atzberger, Carina ;
Cantonati, Petra ;
Messner, Martina ;
Posselt, Laura ;
Lehr, Thorsten ;
Wojtyniak, Jan-Georg ;
Ulrich, Melanie ;
Arnold, Georg J. ;
Koenig, Lars ;
Parazzoli, Dario ;
Zahler, Stefan ;
Rothenfusser, Simon ;
Mayr, Doris ;
Gerbes, Alexander ;
Scita, Giorgio ;
Vollmar, Angelika M. ;
Pachmayr, Johanna .
HEPATOLOGY, 2019, 69 (01) :376-393
[3]  
Avivar-Valderas Alvaro, 2018, Oncotarget, V9, P21444, DOI 10.18632/oncotarget.25118
[4]   First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready? [J].
Baylis, Francoise ;
McLeod, Marcus .
CURRENT GENE THERAPY, 2017, 17 (04) :309-319
[5]   Gene Therapy for Chronic HBV-Can We Eliminate cccDNA? [J].
Bloom, Kristie ;
Maepa, Mohube Betty ;
Ely, Abdullah ;
Arbuthnot, Patrick .
GENES, 2018, 9 (04)
[6]   New CRISPR-Cas systems from uncultivated microbes [J].
Burstein, David ;
Harrington, Lucas B. ;
Strutt, Steven C. ;
Probst, Alexander J. ;
Anantharaman, Karthik ;
Thomas, Brian C. ;
Doudna, Jennifer A. ;
Banfield, Jillian F. .
NATURE, 2017, 542 (7640) :237-241
[7]   Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity [J].
Charpentier, Emmanuelle ;
Richter, Hagen ;
van der Oost, John ;
White, Malcolm F. .
FEMS MICROBIOLOGY REVIEWS, 2015, 39 (03) :428-441
[8]   CRISPR-Cas9 for cancer therapy: Opportunities and challenges [J].
Chen, Minjiang ;
Mao, Aiwu ;
Xu, Min ;
Weng, Qiaoyou ;
Mao, Jianting ;
Ji, Jiansong .
CANCER LETTERS, 2019, 447 :48-55
[9]   Engineered Viruses as Genome Editing Devices [J].
Chen, Xiaoyu ;
Goncalves, Manuel A. F. V. .
MOLECULAR THERAPY, 2016, 24 (03) :447-457
[10]   Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9 [J].
Chou, Yi-ying ;
Krupp, Annabel ;
Kaynor, Campbell ;
Gaudin, Raphael ;
Ma, Minghe ;
Cahir-McFarland, Ellen ;
Kirchhausen, Tom .
SCIENTIFIC REPORTS, 2016, 6