Perceptual learning directs auditory cortical map reorganization through top-down influences

被引:434
作者
Polley, DB
Steinberg, EE
Merzenich, MM
机构
[1] Univ Calif San Francisco, Coleman Mem Lab, WM Keck Fdn Ctr Integrat Neurosci, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA
关键词
cortex; attention; conditioning; reward; plasticity; topographic map;
D O I
10.1523/JNEUROSCI.3771-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The primary sensory cortex is positioned at a confluence of bottom- up dedicated sensory inputs and top-down inputs related to higher-order sensory features, attentional state, and behavioral reinforcement. We tested whether topographic map plasticity in the adult primary auditory cortex and a secondary auditory area, the suprarhinal auditory field, was controlled by the statistics of bottom- up sensory inputs or by top-down task-dependent influences. Rats were trained to attend to independent parameters, either frequency or intensity, within an identical set of auditory stimuli, allowing us to vary task demands while holding the bottom-up sensory inputs constant. We observed a clear double-dissociation in map plasticity in both cortical fields. Rats trained to attend to frequency cues exhibited an expanded representation of the target frequency range within the tonotopic map but no change in sound intensity encoding compared with controls. Rats trained to attend to intensity cues expressed an increased proportion of nonmonotonic intensity response profiles preferentially tuned to the target intensity range but no change in tonotopic map organization relative to controls. The degree of topographic map plasticity within the task-relevant stimulus dimension was correlated with the degree of perceptual learning for rats in both tasks. These data suggest that enduring receptive field plasticity in the adult auditory cortex may be shaped by task-specific top-down inputs that interact with bottom- up sensory inputs and reinforcement-based neuromodulator release. Top-down inputs might confer the selectivity necessary to modify a single feature representation without affecting other spatially organized feature representations embedded within the same neural circuitry.
引用
收藏
页码:4970 / 4982
页数:13
相关论文
共 52 条
[1]   DEPENDENCE OF CORTICAL PLASTICITY ON CORRELATED ACTIVITY OF SINGLE NEURONS AND ON BEHAVIORAL CONTEXT [J].
AHISSAR, E ;
VAADIA, E ;
AHISSAR, M ;
BERGMAN, H ;
ARIELI, A ;
ABELES, M .
SCIENCE, 1992, 257 (5075) :1412-1415
[2]   ATTENTIONAL CONTROL OF EARLY PERCEPTUAL-LEARNING [J].
AHISSAR, M ;
HOCHSTEIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (12) :5718-5722
[3]   Task difficulty and the specificity of perceptual learning [J].
Ahissar, M ;
Hochstein, S .
NATURE, 1997, 387 (6631) :401-406
[4]   Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis [J].
Bakin, JS ;
Weinberger, NM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :11219-11224
[5]   Temporal plasticity in the primary auditory cortex induced by operant perceptual learning [J].
Bao, SW ;
Chang, EF ;
Woods, J ;
Merzenich, MM .
NATURE NEUROSCIENCE, 2004, 7 (09) :974-981
[6]   Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals [J].
Beitel, RE ;
Schreiner, CE ;
Cheung, SW ;
Wang, XQ ;
Merzenich, MM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :11070-11075
[7]   Neural correlates of instrumental learning in primary auditory cortex [J].
Blake, DT ;
Strata, F ;
Churchland, AK ;
Merzenich, MM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :10114-10119
[8]   Learning to see: experience and attention in primary visual cortex [J].
Crist, RE ;
Li, W ;
Gilbert, CD .
NATURE NEUROSCIENCE, 2001, 4 (05) :519-525
[9]   Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task [J].
Dalley, JW ;
McGaughy, J ;
O'Connell, MT ;
Cardinal, RN ;
Levita, L ;
Robbins, TW .
JOURNAL OF NEUROSCIENCE, 2001, 21 (13) :4908-4914
[10]   CLASSICAL-CONDITIONING RAPIDLY INDUCES SPECIFIC CHANGES IN FREQUENCY RECEPTIVE-FIELDS OF SINGLE NEURONS IN SECONDARY AND VENTRAL ECTOSYLVIAN AUDITORY CORTICAL FIELDS [J].
DIAMOND, DM ;
WEINBERGER, NM .
BRAIN RESEARCH, 1986, 372 (02) :357-360