On Hardy-type integral inequalities

被引:3
作者
Leng, Tuo [1 ]
Feng, Yong [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu 610042, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Holder inequality; Copson inequality; Izumi inequality; Pachpatte inequality; HILBERT;
D O I
10.1007/s10483-013-1746-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hardy integral inequality is one of the most important inequalities in analysis. The present paper establishes some new Copson-Pachpatte (C-P) type inequalities, which are the generalizations of the Hardy integral inequalities on binary functions.
引用
收藏
页码:1297 / 1304
页数:8
相关论文
共 15 条
[11]   On some generalizations of Hardy's integral inequality [J].
Pachpatte, BG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (01) :15-30
[12]  
Persson L.E., 2003, WEIGHTED INEQUALITIE
[13]  
Wedestig A., 2003, J INEQ PURE APPL MAT, V4, pARTICL
[14]  
Yang BC, 2001, J MATH ANAL APPL, V261, P295
[15]   Some new inverse type Hilbert integral inequalities [J].
Zhao, CJ ;
Debnath, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (01) :411-418