On Hardy-type integral inequalities

被引:3
作者
Leng, Tuo [1 ]
Feng, Yong [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu 610042, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Holder inequality; Copson inequality; Izumi inequality; Pachpatte inequality; HILBERT;
D O I
10.1007/s10483-013-1746-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hardy integral inequality is one of the most important inequalities in analysis. The present paper establishes some new Copson-Pachpatte (C-P) type inequalities, which are the generalizations of the Hardy integral inequalities on binary functions.
引用
收藏
页码:1297 / 1304
页数:8
相关论文
共 15 条
[1]  
[Anonymous], J AUSTRAL MATH SOC A
[2]  
Copson E.T., 1975, P ROY SOC EDINB A, V75, P157
[3]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[4]  
Hardy GH., 1928, Messenger Math, V57, P12
[5]   ON SOME INEQUALITIES FOR FOURIER SERIES [J].
IZUMI, M ;
IZUMI, SI .
JOURNAL D ANALYSE MATHEMATIQUE, 1968, 21 :277-&
[6]  
Kuang JC, 2000, J MATH ANAL APPL, V245, P248
[8]   Hardy's inequality for W1,p0-functions on Riemannian manifolds [J].
Miklyukov, VM ;
Vuorinen, MK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) :2745-2754
[9]  
Opic B., 1990, Hardy-Type Inequalities
[10]  
PACHPATTE BG, 1992, INDIAN J PURE AP MAT, V23, P773