An Efficient Surrogate Modeling Approach in Bayesian Uncertainty Analysis

被引:0
|
作者
Zhang, Guannan [1 ]
Lu, Dan [2 ]
Ye, Ming [2 ]
Gunzburger, Max [2 ]
Webster, Clayton [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Uncertainty quantification; Bayesian inference; sparse grids; importance sampling; SPARSE GRIDS;
D O I
10.1063/1.4825643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an efficient sparse-grid Bayesian approach for quantifying parametric and predictive uncertainties of physical systems constrained by stochastic PDEs. An accurate surrogate posterior distribution is constructed using sparse-grid interpolation and integration. It improves the simulation efficiency by accelerating the evaluation of the posterior distribution without losing much accuracy, and by determining an appropriate importance density for importance sampling which is easily sampled and captures the main features of the exact posterior distribution.
引用
收藏
页码:898 / 901
页数:4
相关论文
共 50 条
  • [31] A Bayesian Approach for Uncertainty Quantification in Overcoring Stress Estimation
    Feng, Yu
    Harrison, John P.
    Bozorgzadeh, Nezam
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (02) : 627 - 645
  • [32] A Bayesian Approach for Uncertainty Quantification in Overcoring Stress Estimation
    Yu Feng
    John P. Harrison
    Nezam Bozorgzadeh
    Rock Mechanics and Rock Engineering, 2021, 54 : 627 - 645
  • [33] Efficient variational Bayesian model updating under observation uncertainty
    Tao, Yanhe
    Guo, Qintao
    Zhou, Jin
    Ma, Jiaqian
    Li, Xiaofa
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (19):
  • [34] Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach
    Yan Xueman
    Lu Wenxi
    An Yongkai
    Dong Weihong
    ENVIRONMENTAL POLLUTION, 2020, 263
  • [35] Probabilistic Analysis and Design of HCP Nanowires: An Efficient Surrogate Based Molecular Dynamics Simulation Approach
    Mukhopadhyay, T.
    Mahata, A.
    Dey, S.
    Adhikari, S.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (12) : 1345 - 1351
  • [36] Polynomial chaos expansions on principal geodesic Grassmannian submanifolds for surrogate modeling and uncertainty
    Giovanis, Dimitris G.
    Loukrezis, Dimitrios
    Kevrekidis, Ioannis G.
    Shields, Michael D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [37] EFFICIENT SEQUENTIAL EXPERIMENTAL DESIGN FOR SURROGATE MODELING OF NESTED CODES
    Marque-Pucheu, Sophie
    Perrin, Guillaume
    Garnier, Josselin
    ESAIM-PROBABILITY AND STATISTICS, 2019, 23 : 245 - 270
  • [38] Uncertainty-aware surrogate modeling for urban air pollutant dispersion prediction
    Lumet, Eliott
    Rochoux, Melanie C.
    Jaravel, Thomas
    Lacroix, Simon
    BUILDING AND ENVIRONMENT, 2025, 267
  • [39] Deep capsule encoder-decoder network for surrogate modeling and uncertainty quantification
    Thakur, Akshay
    Chakraborty, Souvik
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (12) : 2783 - 2800
  • [40] Surrogate model uncertainty quantification for active learning reliability analysis
    Pang, Yong
    Zhang, Shuai
    Liang, Pengwei
    Wang, Muchen
    Gong, Zhuangzhuang
    Song, Xueguan
    Kan, Ziyun
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (12) : 55 - 70