An Efficient Surrogate Modeling Approach in Bayesian Uncertainty Analysis

被引:0
|
作者
Zhang, Guannan [1 ]
Lu, Dan [2 ]
Ye, Ming [2 ]
Gunzburger, Max [2 ]
Webster, Clayton [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Uncertainty quantification; Bayesian inference; sparse grids; importance sampling; SPARSE GRIDS;
D O I
10.1063/1.4825643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an efficient sparse-grid Bayesian approach for quantifying parametric and predictive uncertainties of physical systems constrained by stochastic PDEs. An accurate surrogate posterior distribution is constructed using sparse-grid interpolation and integration. It improves the simulation efficiency by accelerating the evaluation of the posterior distribution without losing much accuracy, and by determining an appropriate importance density for importance sampling which is easily sampled and captures the main features of the exact posterior distribution.
引用
收藏
页码:898 / 901
页数:4
相关论文
共 50 条
  • [21] Bayesian modeling and uncertainty quantification for descriptive social networks
    Nemmers, Thomas
    Narayan, Anjana
    Banerjee, Sudipto
    STATISTICS AND ITS INTERFACE, 2019, 12 (01) : 181 - 191
  • [22] Uncertainty estimation in hydrodynamic modeling using Bayesian techniques
    Pinheiro, Vivian Borda
    Naghettini, Mauro
    Palmier, Luiz Rafael
    RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2019, 24
  • [23] Efficient thermodynamic model optimization and uncertainty quantification via integration of combinatorial materials chip and Bayesian approach
    Zhang, Haihui
    Wu, Biao
    Xia, Chenghui
    Zhang, Lanting
    Wang, Hong
    SCRIPTA MATERIALIA, 2024, 243
  • [24] Efficient SRAM yield optimization with mixture surrogate modeling
    蒋中建
    叶佐昌
    王燕
    Journal of Semiconductors, 2016, (12) : 68 - 73
  • [25] Surrogate-based uncertainty and sensitivity analysis for bacterial invasion in multi-species biofilm modeling
    Trucchia, A.
    Mattei, M. R.
    Luongo, V.
    Frunzo, L.
    Rochoux, M. C.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 : 403 - 424
  • [26] Accelerating uncertainty quantification in incremental dynamic analysis using dimension reduction-based surrogate modeling
    Giovanis, Dimitris G.
    Taflanidis, Alexandros
    Shields, Michael D.
    BULLETIN OF EARTHQUAKE ENGINEERING, 2025, 23 (01) : 391 - 410
  • [27] Efficient SRAM yield optimization with mixture surrogate modeling
    Jiang Zhongjian
    Ye Zuochang
    Wang Yan
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (12)
  • [28] A DOMAIN DECOMPOSITION APPROACH FOR UNCERTAINTY ANALYSIS
    Liao, Qifeng
    Willcox, Karen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) : A103 - A133
  • [29] An efficient approach for quantifying parameter uncertainty in the SST turbulence model
    Zhang, Jincheng
    Fu, Song
    COMPUTERS & FLUIDS, 2019, 181 : 173 - 187
  • [30] ECONOMIC SCENARIO GENERATOR AND PARAMETER UNCERTAINTY: A BAYESIAN APPROACH
    Begin, Jean-Francois
    ASTIN BULLETIN, 2019, 49 (02): : 335 - 372