An Efficient Surrogate Modeling Approach in Bayesian Uncertainty Analysis

被引:0
|
作者
Zhang, Guannan [1 ]
Lu, Dan [2 ]
Ye, Ming [2 ]
Gunzburger, Max [2 ]
Webster, Clayton [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
Uncertainty quantification; Bayesian inference; sparse grids; importance sampling; SPARSE GRIDS;
D O I
10.1063/1.4825643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an efficient sparse-grid Bayesian approach for quantifying parametric and predictive uncertainties of physical systems constrained by stochastic PDEs. An accurate surrogate posterior distribution is constructed using sparse-grid interpolation and integration. It improves the simulation efficiency by accelerating the evaluation of the posterior distribution without losing much accuracy, and by determining an appropriate importance density for importance sampling which is easily sampled and captures the main features of the exact posterior distribution.
引用
收藏
页码:898 / 901
页数:4
相关论文
共 50 条
  • [1] An efficient Bayesian uncertainty quantification approach with application to k-ω-γ transition modeling
    Zhang, Jincheng
    Fu, Song
    COMPUTERS & FLUIDS, 2018, 161 : 211 - 224
  • [2] PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling
    Jakeman, J. D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 170
  • [3] Uncertainty quantification and propagation in surrogate-based Bayesian inference
    Reiser, Philipp
    Aguilar, Javier Enrique
    Guthke, Anneli
    Buerkner, Paul-Christian
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [4] Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification
    Zhu, Yinhao
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 415 - 447
  • [5] Efficient Bayesian inference for finite element model updating with surrogate modeling techniques
    Li, Qiang
    Du, Xiuli
    Ni, Pinghe
    Han, Qiang
    Xu, Kun
    Yuan, Zhishen
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2024, 14 (04) : 997 - 1015
  • [6] Efficient Bayesian inference for finite element model updating with surrogate modeling techniques
    Qiang Li
    Xiuli Du
    Pinghe Ni
    Qiang Han
    Kun Xu
    Zhishen Yuan
    Journal of Civil Structural Health Monitoring, 2024, 14 : 997 - 1015
  • [7] Sampling-efficient surrogate modeling for sensitivity analysis of brake squeal using polynomial chaos expansion
    Mohamed, Hady
    Schoener, Christoph
    Jekel, Dominic
    RESULTS IN ENGINEERING, 2025, 26
  • [8] Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers
    Zacchei, Filippo
    Rizzini, Francesco
    Gattere, Gabriele
    Frangi, Attilio
    Manzoni, Andrea
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 167
  • [9] Efficient collocational approach for parametric uncertainty analysis
    Xiu, Dongbin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (02) : 293 - 309
  • [10] An adaptive Kriging surrogate method for efficient uncertainty quantification with an application to geological carbon sequestration modeling
    Mo, Shaoxing
    Shi, Xiaoqing
    Lu, Dan
    Ye, Ming
    Wu, Jichun
    COMPUTERS & GEOSCIENCES, 2019, 125 : 69 - 77