Stochastic scattering theory for excitation-induced dephasing: Comparison to the Anderson-Kubo lineshape

被引:9
|
作者
Li, Hao [1 ]
Kandada, Ajay Ram Srimath [2 ,3 ]
Silva, Carlos [4 ,5 ,6 ]
Bittner, Eric R. [1 ]
机构
[1] Univ Houston, Dept Chem, Houston, TX 77204 USA
[2] Wake Forest Univ, Dept Phys, 1834 Wake Forest Rd, Winston Salem, NC 27109 USA
[3] Wake Forest Univ, Ctr Funct Mat, 1834 Wake Forest Rd, Winston Salem, NC 27109 USA
[4] Georgia Inst Technol, Sch Chem & Biochem, 901 Atlantic Dr, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Sch Phys, 837 State St, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Sch Mat Sci & Engn, North Ave, Atlanta, GA 30332 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 15期
基金
美国国家科学基金会;
关键词
CALCULUS; EXCITON;
D O I
10.1063/5.0026467
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we present a quantum stochastic model for spectroscopic lineshapes in the presence of a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. Ito's lemma then allows us to easily construct and evaluate correlation functions and response functions. Focusing on the linear response, we compare our model to the classic Anderson-Kubo model. While similar in motivation, there are differences in the predicted lineshapes, notably in terms of asymmetry, and variation with the increasing background population.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes
    Kandada, Ajay Ram Srimath
    Li, Hao
    Thouin, Felix
    Bittner, Eric R.
    Silva, Carlos
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (16):
  • [2] Excitation-induced dephasing in semiconductor quantum dots
    Schneider, HC
    Chow, WW
    Koch, SW
    PHYSICAL REVIEW B, 2004, 70 (23) : 1 - 4
  • [3] Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing
    Shacklette, JM
    Cundiff, ST
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (04) : 764 - 769
  • [4] Nonlinear response of localized excitons: Effects of the excitation-induced dephasing
    Borri, P
    Langbein, W
    Birkedal, D
    Lyssenko, VG
    Hvam, JM
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 164 (01): : 61 - 65
  • [5] Excitation-induced dephasing and ultrafast intrasubband relaxation in carbon nanotubes
    Hirtschulz, Matthias
    Malic, Ermin
    Milde, Frank
    Knorr, Andreas
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [6] Nonlinear response of localized excitons: Effects of the excitation-induced dephasing
    Technical Univ of Denmark, Lyngby, Denmark
    Phys Status Solidi A, 1 (61-65):
  • [7] Excitation-Induced Dephasing in a Resonantly Driven InAs/GaAs Quantum Dot
    Monniello, Leonard
    Tonin, Catherine
    Hostein, Richard
    Lemaitre, Aristide
    Martinez, Anthony
    Voliotis, Valia
    Grousson, Roger
    PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [8] STOCHASTIC THEORY OF LINE SHAPE - GENERALIZATION OF KUBO-ANDERSON MODEL
    BLUME, M
    PHYSICAL REVIEW, 1968, 174 (02): : 351 - &
  • [9] Transient four-wave-mixing line shapes: effects of excitation-induced dephasing
    Wang, H.
    Ferrio, K.B.
    Steel, D.G.
    Berman, P.R.
    Hu, Y.Z.
    Binder, R.
    Koch, S.W.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1994, 49 (03):
  • [10] Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes
    Burr, GW
    Harris, TL
    Babbitt, WR
    Jefferson, CM
    JOURNAL OF LUMINESCENCE, 2004, 107 (1-4) : 314 - 331