Bounded harmonic maps on a class of manifolds

被引:8
作者
Sung, CJ
Tam, LF
Wang, JP
机构
[1] CHINESE UNIV HONG KONG,DEPT MATH,SHATIN,HONG KONG
[2] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
关键词
D O I
10.1090/S0002-9939-96-03246-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Without imposing any curvature assumptions, we show that bounded harmonic maps with image contained in a regular geodesic ball share similar behaviour at infinity with the bounded harmonic functions on the domain manifold.
引用
收藏
页码:2241 / 2248
页数:8
相关论文
共 21 条
[1]   BOUNDARY-BEHAVIOR OF HARMONIC MAPS ON NONSMOOTH DOMAINS AND COMPLETE NEGATIVELY CURVED MANIFOLDS [J].
AVILES, P ;
CHOI, H ;
MICALLEF, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :293-331
[3]   STRUCTURE OF COMPLETE MANIFOLDS OF NONNEGATIVE CURVATURE [J].
CHEEGER, J ;
GROMOLL, D .
ANNALS OF MATHEMATICS, 1972, 96 (03) :413-443
[4]  
Cheng S. Y., 1980, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), VXXXVI, P147
[5]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[6]   ON THE LIOUVILLE THEOREM FOR HARMONIC MAPS [J].
CHOI, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (01) :91-94
[7]   CONVEX FUNCTIONS AND HARMONIC MAPS [J].
GORDON, WB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 33 (02) :433-&
[8]  
Green R.E., 1979, LECT NOTES MATH, V699
[9]   EXISTENCE THEOREM FOR HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
HILDEBRANDT, S ;
KAUL, H ;
WIDMAN, KO .
ACTA MATHEMATICA, 1977, 138 (1-2) :1-16
[10]   UNIQUENESS AND STABILITY OF HARMONIC MAPS AND THEIR JACOBI FIELDS [J].
JAGER, W ;
KAUL, H .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :269-291