Applications of the linear canonical transform to digital image processing

被引:1
作者
Goel, Navdeep [1 ]
Gabarda, Salvador [2 ]
机构
[1] Punjabi Univ, Yadavindra Dept Engn, Guru Kashi Campus, Talwandi Sabo 151302, Punjab, India
[2] Inst Opt Daza Valdes CSIC, Serrano 121, Madrid 28006, Spain
关键词
REPRESENTATION TRANSFORMATION; FRACTIONAL FOURIER; THEOREM; CLASSIFICATION;
D O I
10.1364/JOSAA.465011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, an existing approximation of discrete linear canonical transform(DLCT) is analyzed, and constraints are derived to fulfill some paramount properties as inversibility and additivity or the possibility to performclassical image operations in the frequency domain as image filtering. Giving some special values to the DLCT parameters and taking advantage of the division of the image spectrum in four zones of different significance, an application of image feature classifications is successfully investigated. Also, the required constraints are obtained to determine the suitability of the selected approximation when working with digital images. (c) 2022 Optica Publishing Group
引用
收藏
页码:1729 / 1738
页数:10
相关论文
共 33 条
[1]   The discrete fractional Fourier transformation [J].
Arikan, O ;
Kutay, MA ;
Ozaktas, HM ;
Akdemir, OK .
PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, :205-207
[2]  
Asuni N., 2014, STAG, P63
[3]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[4]   Classification of lossless first-order optical systems and the linear canonical transformation [J].
Bastiaans, Martin J. ;
Alieva, Tatiana .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (04) :1053-1062
[5]  
Berndt B., 1998, CANADIAN MATH SOC SE
[6]   AFFINE THEOREM FOR 2-DIMENSIONAL FOURIER-TRANSFORM [J].
BRACEWELL, RN ;
CHANG, KY ;
JHA, AK ;
WANG, YH .
ELECTRONICS LETTERS, 1993, 29 (03) :304-304
[7]  
Brodatz P, 1977, Rotated Texture Database
[8]  
Gabarda S., 2016, INT C MATH CHAR AN, P1
[9]   Chirp multiplexing and filtering in the offset linear canonical transform domain [J].
Goel, Navdeep ;
Gabarda, Salvador ;
Singh, Kulbir .
OPTIK, 2021, 227
[10]   Multiplicative filtering in the linear canonical transform domain [J].
Goel, Navdeep ;
Singh, Kulbir ;
Saxena, Rajiv ;
Singh, Ashutosh Kumar .
IET SIGNAL PROCESSING, 2016, 10 (02) :173-181