N-Soliton Solutions of (2+1)-Dimensional Non-isospectral AKNS System

被引:0
|
作者
Zhang Xiao-Xian [1 ]
Sun Ye-Peng [2 ]
机构
[1] Lanzhou City Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Shandong Econ Univ, Sch Math & Stat, Jinan 250014, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
non-isospectral AKNS system; Hirota method; N-solution; non-isospectral Schrodinger equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The bilinear form of the (2+1)-dimensional non-isospectral AKNS system is derived. Its N-soliton solutions are obtained by using the Hirota method. As a reduction, a (2+1)-dimensional non-isospectral Schrodinger equation and its N-soliton solutions are constructed.
引用
收藏
页码:1181 / 1184
页数:4
相关论文
共 50 条
  • [1] N-Soliton Solutions of(2+1)-Dimensional Non-isospectral AKNS System
    ZHANG Xiao-Xian~(1
    CommunicationsinTheoreticalPhysics, 2008, 50 (11) : 1181 - 1184
  • [2] N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation
    Sun, YP
    Bi, JB
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 905 - 912
  • [3] The N-soliton solutions for the non-isospectral mKdV equation
    Zhang, Y
    Deng, SF
    Zhang, DJ
    Chen, DY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 228 - 236
  • [4] Soliton solutions for a negative order non-isospectral AKNS equation
    Ji, Jie
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4034 - 4046
  • [5] N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrodinger Equation
    Zhao Song-Lin
    Zhang Da-Jun
    Chen Deng-Yuan
    CHINESE PHYSICS LETTERS, 2009, 26 (03)
  • [6] (2+1)-dimensional non-isospectral multi-component AKNS equations and its integrable couplings
    Sun, Ye-Peng
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2010, 1212 : 264 - 272
  • [7] Bright and dark N-soliton solutions for the (2+1)-dimensional Maccari system
    Liu, Lei
    Tian, Bo
    Yuan, Yu-Qiang
    Sun, Yan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02):
  • [8] N-soliton solutions to a (2+1)-dimensional integrable equation
    Yu, SJ
    Toda, K
    Fukuyama, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (50): : 10181 - 10186
  • [9] Non-isospectral problem in (2+1) dimensions
    Estévez, PG
    Hernáez, GA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (10): : 2131 - 2143
  • [10] On (2+1)-Dimensional Non-isospectral Toda Lattice Hierarchy and Integrable Coupling System
    YU Fa-Jun College of Maths and Systematic Science
    CommunicationsinTheoreticalPhysics, 2008, 49 (03) : 549 - 554