Automatic Modulation Recognition Based on the Optimized Linear Combination of Higher-Order Cumulants

被引:5
作者
Hussain, Asad [1 ,2 ]
Alam, Sheraz [1 ]
Ghauri, Sajjad A. [3 ]
Ali, Mubashir [4 ]
Sherazi, Husnain Raza [5 ]
Akhunzada, Adnan [6 ]
Bibi, Iram [7 ]
Gani, Abdullah [8 ]
机构
[1] Natl Univ Modern Languages, Fac Engn & Comp Sci, Islamabad 44000, Pakistan
[2] Univ Bergamo, Dept Engn & Appl Sci, I-24129 Bergamo, Italy
[3] ISRA Univ, Sch Engn & Appl Sci, Islamabad Campus, Islamabad 44000, Pakistan
[4] Univ Bergamo, Dept Management Informat & Prod Engn, I-24129 Bergamo, Italy
[5] Univ West London, Sch Comp & Engn, London W5 5RF, England
[6] Univ Doha Sci & Technol, Coll Comp & Informat Technol, Doha 24449, Qatar
[7] Comsats Univ, Dept Comp Sci, Islamabad 45550, Pakistan
[8] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Sabah, Malaysia
关键词
modulation recognition; K-nearest neighbor; genetic algorithm; higher-order cumulants; CLASSIFICATION; ARCHITECTURE;
D O I
10.3390/s22197488
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Automatic modulation recognition (AMR) is used in various domains-from general-purpose communication to many military applications-thanks to the growing popularity of the Internet of Things (IoT) and related communication technologies. In this research article, we propose an innovative idea of combining the classical mathematical technique of computing linear combinations (LCs) of cumulants with a genetic algorithm (GA) to create super-cumulants. These super-cumulants are further used to classify five digital modulation schemes on fading channels using the K-nearest neighbor (KNN). Our proposed classifier significantly improves the percentage recognition accuracy at lower SNRs when using smaller sample sizes. A comparison with existing techniques manifests the supremacy of our proposed classifier.
引用
收藏
页数:16
相关论文
共 63 条
[1]   A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends [J].
Abdel-Moneim, Mohamed A. ;
El-Shafai, Walid ;
Abdel-Salam, Nariman ;
El-Rabaie, El-Sayed M. ;
Abd El-Samie, Fathi E. .
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (10)
[2]  
Abdelmutalab A, 2014, 2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), P806, DOI 10.1109/PIMRC.2014.7136275
[3]   Automatic Modulation Classification Based on Kernel Density Estimation [J].
Abuella, Hisham ;
Ozdemir, Mehmet Kemal .
CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2016, 39 (03) :203-209
[4]   k-Sparse Autoencoder-Based Automatic Modulation Classification With Low Complexity [J].
Afan Ali ;
Fan Yangyu .
IEEE COMMUNICATIONS LETTERS, 2017, 21 (10) :2162-2165
[5]   Using fuzzy clustering and TTSAS algorithm for modulation classification based on constellation diagram [J].
Ahmadi, Negar .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) :357-370
[6]  
Ahmed M, 2021, Arxiv, DOI arXiv:2109.12711
[7]   Automatic Modulation Classification Using Deep Learning Based on Sparse Autoencoders With Nonnegativity Constraints [J].
Ali, Afan ;
Fan Yangyu .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (11) :1626-1630
[8]   Automatic modulation classification using different neural network and PCA combinations [J].
Ali, Ahmed K. ;
Ercelebi, Ergun .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
[9]   Modulation Classification of MFSK Modulated Signals Using Spectral Centroid [J].
Baris, Burcu ;
Cek, M. Emre ;
Kuntalp, Damla Gurkan .
WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (01) :763-775
[10]  
Bibi I., 2019, 2019 UKCHINA EMERGIN, P1